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ABSTRACT 

 
Dynamic mode decomposition (DMD) has been used for experimental and numerical data analysis in fluid 

dynamics. Despite of its advantages, the application of the DMD methodology to investigate the natural 

circulation in nuclear reactors is very scarce in literature. In this paper it is applied the traditional DMD and its 

variation, the sparsity-promoting dynamic mode decomposition (SPDMD), for analysis  of temperature and 

velocity fields. These datasets are generated by computational simulation of an experimental setup in reduced 

scale, similar to a heat removal system by natural circulation of a pool-type research reactor. Firstly the 

numerical data is partitioned, using a space-time correlation approach, in order to identify fundamental 

sequences to compute the dynamic modes. Next, the DMD and SPDMD methodologies are applied over each 

subsequence to obtain the dynamic modes of the temperature and velocity fields. Finally the flow fields are 

reconstructed and compared with the original numerical data. The conclusion is that the SPDMD performs 

better than DMD to represent both the temperature and velocity data. 

 
Keywords: DMD, natural circulation, numerical data. 
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INTRODUCTION 
 

 The natural circulation is a very important matter with great interest in the nuclear reactor 

thermal-hydraulics. Many studies concerning the heat removal of a nuclear reactor by natural 

circulation have been carried out in the last two decades, to more clearly understand the physical 

phenomena and to develop methods for simulating the thermal hydraulic behavior in a passive 

reactor cooling mode [1-4]. Theoretical models for prediction of single-phase and two-phase natural 

circulation flow parameters have been developed. Although these models have the ability to predict 

important flow parameters such as the pressure gradient, average phase velocities and void 

fractions, they are not capable to predict the flow structure itself. Moreover, the flow structure 

evolution may differ from that of forced convection flows [5], [6]. When a nuclear reactor is 

submitted to natural circulation conditions, a movement of the working fluid occurs from the hottest 

regions to the colder ones, resulting in a heat removal from the hottest regions. When this 

phenomenon is established, it has a heat exchange cycle that does not depend on any external 

mechanisms, for example, a pump. From this moment, the velocity fields control depends only on 

the phenomenon and any variation in the velocities should be attributed to buoyancy forces, which 

can be related with temperature variations in the system. In a particular case of a pool type research 

reactor after a shutdown, the heat is transferred by natural circulation from the core to a pool water 

upward through the core [7]. 

More recently the occurrence of the natural circulation in nuclear research reactors has been 

described in the literature by studies focusing mainly: the prevention of a severe accident [8], the 

effect of an unprotected reactivity insertion on the dynamic response of Materials Testing Reactor -

MTR research reactors under natural circulation regime [9], the investigation of flow reversal from 

downward forced to upward natural circulation [10], the stability of the natural circulation and its 

suppression due to the presence of oscillations [11], [12]. 

Since its proposal in [13], the dynamic mode decomposition (DMD) has been used for 

numerical and experimental data analysis in fluid mechanics to identify low-order dynamics. The 

DMD formulates the flow time series as a Krylov sequence [14] by assuming a linear mapping that 

connects the flow field at a time step 𝑡 to the subsequent flow field at time 𝑡 + ∆𝑡. Then, given a 
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sequence of 𝑁 flow snapshots, the DMD technique performs the singular value decomposition 

(SVD) of the data matrix composed by the first 𝑁 − 1 flow snapshots and applies preprocessing 

step using the SVD result to get a robust computation of the proper modes of the data sequence. The 

DMD approach and its variant, named sparsity-promoting DMD (SPDMD) [15], have been 

successfully applied for numerical data generated through Navier-Stokes codes and experimental 

data measurements. 

In the standard DMD as well as in the SPDMD the reasoning to set 𝑁 is that, adding further 

flow fields v𝑖 to the data sequence will not improve the vector space spanned by 𝑉1
𝑁. However, if 

we consider a transient regime we may have a data sub-sequence (with 𝑁𝑇 time steps) capturing the 

transient dynamics and a second sequence (with 𝑁𝑆time steps) representing the quasi-stationary 

flow. Depending on the pattern complexity inside each flow regime the space spanned by one may 

(or may not) contains the other one as a subspace. This issue is particularly interesting to be 

investigated in natural circulation flows due to the possibility to assess itself the flow structure to 

study instabilities (oscillations), in single-phase and two-phase flows, as they can cause damages to 

the system due excessive pressure, temperature or vibration variation. 

In this paper, as case study, we apply the DMD and SPDMD methodologies on numerical data, 

composed by time-varying temperature and velocity, generated by computational simulation of an 

experimental setup working under single-phase natural circulation flow. So, we apply the 

methodology proposed in [19] in order to set the best value for 𝑁. Next, we take each flow field and 

compare DMD and SPDMD regarding to flow patterns preservation and dimension of dynamic 

mode representation (compact representation). In the case of temperature we notice that both 

SPDMD and DMD reconstructed data preserve the flow fields but the former allows a more sparse 

(compact) representation. The same was verified for the velocity field. Consequently, we conclude 

that SPDMD outperforms traditional DMD in the performed tests. In the text remaining, we firstly 

summarize the DMD and SPDMD in section 2. Then, section 3 describes the methodology 

proposed in [19]. The computational setup is discussed in section 4. The results are presented in 

section 5. Finally, we show conclusions and future works (section 6). 
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DMD AND SPDMD APPROACHES 
 

In the DMD theory [13], a flow field in time step i (numerical frame), is arranged in vector 

form 𝐯𝑖 ∈ ℝ𝑛. Then, we assemble the first N snapshots in the form 𝑉1
𝑁 = {v1, v2, ⋯ , v𝑁} ∈ ℝ𝑛×𝑁 . 

If we suppose that 𝑉1
𝑁−1 is a rank − r matrix, we can compute the economy-size singular value 

decomposition SVD of 𝑉1
𝑁−1 to get 𝑉1

𝑁−1 = 𝑈Σ𝑊𝐻 where 𝑈 ∈ ℝ𝑛×𝑟 , Σ ∈ ℝ𝑟×𝑟 , 𝑊 ∈ ℝ(𝑁−1)×𝑟 , and 

𝑊𝐻denotes the transpose (or complex - conjugate transpose inℂ). 

Now, following [15], we define 𝐹𝑑𝑚𝑑 = 𝑈𝐻𝑉2
𝑁𝑊Σ−1 ∈ ℝ𝑟𝑥𝑟 and solve the eigenvector-

eigenvalue equation 𝐹𝑑𝑚𝑑y = μ y . Then, the dynamic mode𝜙 ∈ ℂ𝑛 is defined by [13], [15]: 

 

       (1)   

 

If we suppose that 𝐹𝑑𝑚𝑑 ∈ ℝ𝑟×𝑟 has a full set of linearly independent eigenvectors 𝑌 =

{𝐲1, 𝐲2¸ ⋯ 𝐲𝑟} with corresponding eigenvalues {𝜇1, 𝜇2, ⋯ , 𝜇𝑟}, we can write 

𝐯𝑡+1 ≈ ∑ 𝜁𝑖
𝑡𝜙𝑖, 𝑡 = 0,1,2, … , 𝑁 − 2

𝑟

𝑖=1
,[15]. If we write 𝜁𝑖

𝑡 = 𝜇𝑖
𝑡𝛼𝑖, 𝑖 = 1,2, ⋯ , 𝑟, then, we must 

determine the optimum vector of amplitudes 𝛼 = [𝛼1𝛼2  ⋯ 𝛼𝑟]𝑇  to represent the time sequence 

𝑉1
𝑁−1 . The optimum 𝛼 can be found by solving the problem: 

 

  (2) 

 

where Φ = [ 𝜙1   𝜙2   𝜙3 ⋯  𝜙𝑟  ] = 𝑈𝑌, 𝐷𝛼 = 𝑑𝑖𝑎𝑔 (𝛼1, 𝛼2, ⋯ , 𝛼𝑟), and 𝑉𝑎𝑛𝑑 is the Vandermonde 

matrix given by 𝑉𝑎𝑛𝑑(𝑖, 𝑗) = 𝜇𝑖+1
𝑗

 , 0 ≤ 𝑗 ≤ 𝑁 − 2. In [15] it is demonstrate that the solution of 

problem (2) is: 

 

 , (3) 

 

where the operation ‘ ’ means the elementwise multiplication of two matrices. 
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The key idea behind SPDMD is to change the objective function in expression (2) in order to 

introduce sparsity in the dynamic mode representation but keeping the quality of the reconstruction. 

This is implemented by solving the optimization problem: 

 

 , (4) 

 

where �̂�𝛼 = 𝑑𝑖𝑎𝑔(�̂�1, �̂�2, ⋯ �̂�𝑟), Φ and 𝑉𝑎𝑛𝑑 are the same matrices of expression (2), and 𝛾 ∈ ℝ   

controls the sparsity of the solution. Once problem (4) is solved, the second step of SPDMD 

technique adjusts the values of the non-zero entries of �̂� in order to optimally approximate the 

entire data sequence. That means, we solve the problem (4) with 𝛾 = 0, but subject to 𝐸𝑇�̂� = 0  

where 𝐸 ∈ ℝ𝑟×𝑚 encodes information about the sparsity structure of the vector �̂� (see [15] for 

details). 

 

METHODOLOGY 

 

A critical value in the DMD techniques of previous section is the sub-sequence size N. So, in 

order to compute N, we apply the method presented in [19] and firstly perform a coarse temporal 

data segmentation using a simple similarity measure, the cross-correlation defined by [16]: 

 

  (5) 

where   and  . 

 

The lower/higher values of the cross-correlation (5) indicate the evolution in time of different 

flow configurations, given a guess about fundamental sub-sequences. To smooth the correlation 

signal, we apply the total variation filter [20], generating a smooth signal 𝑇(𝐶)𝑖,𝑖+1. This iterative 
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technique depends on two parameters: smoothing parameter λ and number of iterations 𝑁𝑖𝑡 , which 

we set by trial and error. 

The obtained function is the input for a discrete differentiation filter, combined with a simple 

thresholding  operation, that highlights the points of transition in the numerical frame sequence. Let 

us suppose that such transitions happen for 𝑘 ∈ {𝑖1,  𝑖2, ⋯ , 𝑖𝑀}, with 𝑖1 < 𝑖2 <  ⋯ < 𝑖𝑀 . From this 

result, we generate M segments given by the subsequences [1, 𝑖1], [1, 𝑖2], ⋯ , [1, 𝑖𝑀]. We take into 

account the rank of each segment obtained in order to compute the DMD and SPDMD dynamic 

modes for each interval [1, k], denoted by 𝜙𝑖,𝑘 and �̂�𝑖,𝑘, respectively. Then, each segment is 

analyzed considering the norm of the residuals of DMD, computed by the frame-to-frame error 

(𝐸𝑑𝑚𝑑)  and the root mean square error(𝑅𝑀𝑆𝐸𝑑𝑚𝑑) given, respectively, by: 

 

  (6) 

 

  (7) 

 

where  is the dimension of the data vectors, 𝑘 ∈ {𝑖1,  𝑖2, ⋯ , 𝑖𝑀}, and 𝜃 ∈ {𝑖1,  𝑖2, ⋯ , 𝑖𝑀, 𝑁} . 

When 𝜃 ≠ 𝑁 we call the result a local reconstruction error, otherwise (𝜃 = 𝑁)we say that we 

calculate global reconstruction errors. The idea is to choose an interval with low global and low 

local reconstruction errors. We can choose the best [1, 𝑖𝑜𝑝𝑡] interval to compute the DMD dynamic 

modes by solving the optimization problem [19]: 

 

  (8) 

 

where: 

ℒ(𝑘, 𝑁) = 𝑅𝑀𝑆𝐸𝑑𝑚𝑑(𝑘, 𝑁) + 𝑅𝑀𝑆𝐸𝑑𝑚𝑑(𝑘, 𝑘), 
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since, the first term 𝑅𝑀𝑆𝐸𝑑𝑚𝑑(𝑘, 𝑁) is the global reconstruction error obtained when computing 

DMD using the interval [1, k] and the second term 𝑅𝑀𝑆𝐸𝑑𝑚𝑑(𝑘, 𝑘) is the local reconstruction error 

in the same interval. 

However, to compute 𝑅𝑀𝑆𝐸𝑑𝑚𝑑(𝑘, 𝑁) we need to calculate DMD technique using the interval 

[1, k] but reconstruct (N − 1) >k frames using the obtained dynamic modes. To perform this task, we 

must solve the optimization problem (2) but, in this case, Φ is related to the SVD decomposition of 

𝑉1
𝑘−1 instead of  𝑉1

𝑁−1 . We solve this generalized version of problem (2) by noticing that (see 

[19]): 

 

  (9) 

 

Hence, if we define Ψ(𝑡) ≡ [𝜇1
𝑡𝜙1 𝜇2

𝑡 𝜙2   ⋯   𝜇𝑟
𝑡 𝜙𝑟]  , we can follow [19] and compute the solution 

of this generalized version of problem (2) through: 

 

  (10) 

 

where   

 

Considering that the SPDMD tries to optimize the data representation in the dynamic mode 

subspace, we take the solution of (8) to compute the SPDMD technique. We follow the SPDMD 

methodology available in [18] and seek for a near-optimum value for parameter γ by considering a 

log-distributed list of values. Then, we take each dynamic mode subspace generated and compare 

the global reconstruction error as well as the sparsity of the vector α versus the γ values. The 

SPDMD frame-to-frame error 𝐸𝑠𝑝𝑑𝑚𝑑 and the corresponding root mean square error 𝑅𝑀𝑆𝐸𝑠𝑝𝑑𝑚𝑑 

have the same form of expressions (6)-(7): 

 

  (11) 
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  (12) 

 

and, like for DMD, the global reconstruction error associated to the optimum interval [1, 𝑖𝑜𝑝𝑡] is 

computed by 𝑅𝑀𝑆𝐸𝑑𝑚𝑑(𝑖𝑜𝑝𝑡, 𝑁) . Likewise in the DMD case, we must compute expression (10), 

with the vector  and matrix B yielded using the SPDMD dynamic modes with �̂�𝑖  ≠ 0. In this case, 

we want to obtain a desirable tradeoff between the quality of approximation and the number of 

modes that are used to approximate the time series. Therefore, we set 𝛾 with a value that gives low 

global reconstruction error as well as high sparsity. 

Next, we take each data sequence and compare DMD and SPDMD regarding to the flow pattern 

preservation and compact representation. Both techniques are computed using the best interval 

[1, 𝑖𝑜𝑝𝑡]. 

 

EXPERIMENTAL AND COMPUTATIONAL SETUPS 
 
 

The experimental setup is shown in Figure 1. It was designed according to similarity criteria for 

scaling reduced models in relation to a prototype of a pool type 30 MW research reactor. It consists 

of a cylindrical vessel with an upper side open simulating the reactor pool. The cylindrical vessel is 

2.9 m height with an inner diameter of 0.8 m. It includes 4 transparent viewfinders to allow the flow 

visualization. The internals of the vessel are formed by a natural circulation tube, a lower plenum, a 

heating box with 24 electrical resistances representing the reactor core, and a chimney located at 

exit of the heating box. Surrounding the heating box there is a cylindrical chamber representing the 

reflector. The working fluid is distilled water. The instrumentation to be installed will provide 

parameter measurements such as temperature, velocity, and power. 
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The numerical simulation of the experimental setup was carried out under single-phase natural 

circulation condition. The package Open FOAM was used with the 𝜅 − 𝜖 turbulence model. 

Besides, in the presence of the natural circulation, a laminar flow has been assumed and the Navier-

Stokes equations of mass, momentum and energy were solved in a domain discretized by the finite 

volume method. The following solvers of the Open FOAM were used: “BoussinesqSimpleFoam” 

for the buoyancy-driven term, the “Simple” algorithm for the pressure-velocity coupling, and 

“Gauss Upwind” numerical scheme for the solution of the mathematical model. The unstructured 

mesh is formed by 900,438 elements. The initial velocity of the fluid was considered zero. The 



 Ramos et al. Author et al.  ● Braz. J. Rad. Sci. ● 2020  

 

temperature was initialized with the value of   for the fluid and for the entire inner part of the 

cylindrical vessel. For the vessel open upper surface, it is assumed room temperature, while the rest 

of the outer part of the vessel is regarded as being thermally insulated. Then, the heat transfer to the 

room was allowed on the vessel upper side only. The thermal power dissipated by the electrical 

resistances is 8,000 W. 

 

RESULTS 

 

In this section we present results by comparing reconstructions of numerical data that are 

obtained by DMD and SPDMD methodologies. Firstly, we consider the traditional DMD and apply 

the methodology of section 3 to find the number 𝑁 of snapshots used to compute the dynamic 

modes. Next, we apply the SPDMD using the obtained N to complete the analysis. The 

implementation is performed using Matlab resources. 

The whole frame sequence has 16,077 numerical snapshots holding the velocity and             

temperature  fields represented using a computational grid with 900,438 elements. Despite of the 

large number of numerical frames, we take only the last 41 ones for the analysis because they are 

more representative of the prototype operating temperature. In each time step, the temperature is 

represented as an array with 900,438 elements while the velocity field is reshaped in a vector with 

3×900,438 = 2,701,314 entries. We start with the velocity dataset. Following the steps of section 3, 

we compute the cross-correlation through expression (5), shown in Figure 2.(a). Then, the total 

variation technique [20] is used to process that result, to obtain a smoother signal shown in Figure 

2.(b). Following, the differentiation operator is applied, given the result pictured in Figure 2.(c), that 

is  thresholded to generate the result of Figure 2.(d) highlighting the fundamental intervals: [1, 6], 

[1, 35], [1, 40]. In these operations, we use the following parameters values obtained by trial and 

error: (1) Total variation parameters: 𝜆 = 0.3 and number of iterations  𝑁𝑖𝑡 = 3; (2) Threshold for 

differentiation operator result: 𝑇 = 1.2 × 10−9. 
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Next, we compute the traditional DMD for each interval, and perform local as well as global 

reconstructions using each DMD basis. In this case, the singular values of the matrices 𝑉1

𝑖𝑗−1
, 

(𝑖1 = 6, 𝑖2 = 35, 𝑖3 = 40) are non-null. So, we consider full rank matrices (𝑟 = 𝑖𝑗 − 1)  compute 

the DMD for each interval as well as the local reconstruction errors, given by expression (7) with 

Figure 2:(a) Cross-correlations 𝐶𝑖,𝑖+1 . (b) Total variation filtering signal (𝑇(𝐶)𝑖,𝑖+1) 

obtained with 𝜆 = 0.3 and 𝑁𝑖𝑡 = 3.0. (c) Visualization of the differentiation operation. (d) 

Intervals obtained by thresholding with 𝑇 = 1.2 ×  10−9 the differentiation result: [1, 6], 

[1, 35], [1, 40] 
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(𝑘, 𝜃) ∈  {(6,6), (35,35), (40,40)} ,for each sub-sequence. The results are presented in           

Figure 3.( a). 

 

 

 

 

 

 

 

Now, we apply the SPDMD methodology using the velocity fields in the best interval [1,40] to 

compute the dynamic modes and the sparse  vector �̂� calculated following the last paragraph of 

section 2. In order to seek for a suitable value for parameter 𝛾 we choose a log-distributed list 

compose by 20 elements logarithmically spaced from 10 to 70. These bounds were obtained after 

several choices of 𝛾 intervals with the aim to insert reasonable sparsity but keeping low global 

reconstruction errors.  So, for each 𝛾 value in the list we compute the SPDMD. The Figure 4.(a) 

shows the global reconstruction error versus the values of 𝛾 used. We shall notice that in the 

interval 25.136 ≤ γ ≤ 70 the reconstruction error and the number of non-zero alphas (Figure 

4.(b)) are the minimum ones. So, we set 𝛾 = 25.136 to proceed our analysis. We shall emphasize 

that we consider null the alpha values smaller than 10−12. 

Figure 3:(a) Local errors, computed by expression (7) with 

(𝑘, 𝜃) ∈  {(6,6), (35,35), (40,40)}. (b) Analogous result but considering the global 

reconstruction errors given by 𝑅𝑀𝑆𝐸𝑑𝑚𝑑(𝑘, 41)  for the intervals [1, 𝑘], with 

 𝑘 ∈ {6, 35, 40}. 
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As we can see in Figure 5.(a) by observing the velocity vectors in the simulation time 16,077 

seconds, the cooling water is moving along the pool (cylindrical vessel), going from the heater 

(core) to the top of the pool and returning back to the heater  through the natural circulation tube. In 

the heater the water is heated (due to the heat generated by the electric resistors) and rises through 

the chimney. Next it moves along an upward vertical path near the wall of the cylindrical vessel. 

During this movement the water transfers the heat received from the heater to the pool, and then it 

cools. Now the water moves along a downward vertical path near the opposite wall of the 

cylindrical vessel going down to the natural circulation tube until the heater, where it is heated 

again and the heating-cooling cycle continues. The same behaviors are observed in the 

reconstructed data (Figures 5.(b), 5.(c)) with approximately the same visual quality. In fact, the 

global reconstruction errors of SPDMD and DMD are 8.1521 ×  10−06 and 7.9797 × 10−06, 

respectively. Taking into account that the velocity variation falls in the range [5.1993 × 10−4,

0.2980  𝑚/𝑠] such errors can be considered very low. Considering that the errors are very close one 

Figure 4: (a) Global error versus gamma values for velocity fields. (b) Number of non-null 

alphas versus gamma values. 
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to each other and that SPDMD uses a sparse alpha vector (2 non-null entries among 39 ones) we 

can say that SPDMD outperforms DMD in the velocity field analysis. 

 

 

 

 

If we apply the same methodology used above to analyze the temperature field, that falls in the 

range [360.20,528.10] (in Kelvin), we get the intervals [1,3] and [1,40] calculated using the cross-

correlation, followed by thresholding of the differentiation. The best segment is [1, 40], computed 

by solving expression (8). Then, we seek the optimum gamma to compute SPDMD dynamic modes 

using a list of 20𝛾 values logarithmically spaced from 10 to 600.  The analysis of the   global 

reconstruction error and number of non-zero alphas versus gamma gives 𝛾 = 164.675  as the best 

choice that generates an alpha vector with seven non-null elements. Figure 6 shows the real (Figure 

Figure 5:(a) Visualization of the velocity field at simulation time 16, 077 

seconds. (b) Same numerical frame reconstruction using DMD. (c) 

Reconstruction using SPDMD dynamic modes with 𝛾 = 25.136. 
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6.(a)) and reconstructed temperature fields (Figures 6.(b), 6.(c)) in the simulation time 16,077 

seconds. A visual comparison between these images does not show differences between the original 

and reconstructed data. In fact, the global reconstruction error in this case is 0.0643 for SPDMD and 

0.0680 for DMD, which are very low values in comparison with the temperature range cited above. 

However, once SPDMD uses a sparse alpha vector (7 non-null entries among 39 ones) and gets a 

global reconstruction error lower than DMD, we can say that the former outperforms the latter for 

the temperature data analysis. 

 

 

 

 

 

Figure 6: (a) Temperature field at simulation time 16, 077 seconds. (b) 

Reconstruction using DMD. (c) Reconstruction using SPDMD dynamic modes with 𝛾 

= 164.675. 
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6. CONCLUSION 

 

In this work, we compare the DMD and SPDMD to analyze numerical data in natural 

circulation. We apply a methodology proposed in [19] to set the number 𝑁 of snapshots used to 

compute the dynamic modes. Finally, we compare DMD and SPDMD results regarding to flow 

preservation and compact representation. Although both SPDMD and DMD perform almost equal 

in terms of reconstruction quality, we notice that SPDMD outperforms DMD because it gives a 

more compact representation in the tests. Further works are undertaken to exploit low-rank tensor 

decompositions within the DMD methodology to analyze the velocity field. 
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