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ABSTRACT 

 
Over the last six decades, the discrete spectrum of the neutron transport operator has been widely studied. 

Significant theoretical results can be found in the literature regarding the one–speed linear transport equation 

with anisotropic scattering. In this study, the discrete–ordinates (𝑺𝑵) transport problem with anisotropic 

scattering has been considered and the discrete spectrum results in multiplying media have been corroborated. 

The numerical results obtained for the dominant 𝑺𝑵 eigenvalues agreed with the ones for the analytic problem 

reported in the literature up to a triplet scattering order. A compact methodology to perform the spectral 

analysis to multigroup 𝑺𝑵  problems with high anisotropy order in the scattering and fission reactions is also 

presented in this paper. 
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 1. INTRODUCTION 

 

Case (1960) presented a general procedure with the intent to analytically solve the Boltzmann 

Transport Equation (BTE) by the expansion of its solution into a complete set of eigenfunctions [1]. 

This is, undoubtedly, one of the most remarkable studies in the field of neutral particle transport 

theory [2]. Even though eigenfunctions might present a lack of utility in the solution to practical 

nuclear engineering problems, this method has been applied among different fields in physics seeking 

a comprehensive mathematical understanding [2, 3]. Case found an analytic solution to the steady–

state, homogeneous BTE in slab geometry considering one–speed particles and isotropic scattering. 

Over the past 60 years, the method has been applied to more complex problems that may consider 

energy dependence, multiplying media, anisotropic scattering, heterogeneity, and/or multiple 

dimensions [2, 4]. 

Case proved that the solutions are given by two discrete modes corresponding to a ± pair of 

eigenvalues that lie outside interval (−1; +1), in addition to a complimentary continuous eigenvalue 

spectrum over the interval [−1; +1] [1]. This pair of discrete dominant eigenvalues are 

conventionally referred to as 𝑐–eigenvalues [5] since they depend on the material cross section by 

𝑐 =
𝛴𝑆  +  𝜈 𝛴𝑓

𝛴𝑇
 . 

In regard to obtaining a discrete eigenvalue spectrum, besides the monoenergetic problem with 

isotropic scattering [1], the main results have been applied to problems considering linearly 

anisotropic scattering [6], and more recently, arbitrary–order anisotropic scattering [4, 7, 8]. In 

Section 2 of this paper, the methodology described by Sahni and Tureci [4] is summarized and the 

main results for all the mentioned cases are presented. 

To the best of this author's knowledge, no published work has extended these results to include 

multigroup these results to multigroup transport problems in the discrete–ordinates (𝑆𝑁) formulation 

considering arbitrary order of anisotropy on the scattering and fission reactions. The procedures 

described here present a general solution to the problem cited before, including the possibility of 

obtaining eigenvalues over the complex plane. The spectral analysis for the 𝑆𝑁 BTE that supports the 

discrete eigenvalues of the Case's spectrum has also been performed. 
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 2. MATERIALS AND METHODS 

 

According to the notation used by Sahni and Tureci [4], the steady–state BTE for one–speed 

neutrons in a slab–geometry homogeneous media can be written as 

𝜇
𝜕

𝜕𝑥
𝜓(𝑥,  𝜇) + 𝛴𝑇  𝜓(𝑥,  𝜇)  =  

𝑐 𝛴𝑇
2
 ∑𝑏𝑙  𝑃𝑙(𝜇)

𝐿

𝑙=0

 ∫ 𝑑𝜇′
1

−1

 𝑃𝑙(𝜇
′) 𝜓(𝑥,  𝜇′) . (1) 

In Equation (1), the conventional terms apply: 𝛴𝑇 is the total macroscopic cross–section, c is the mean 

number of secondary neutrons per collision, 𝑏𝑙 depend on the scattering function with 𝑏0 = 1, and 

𝑃𝑙(𝜇) are the Legendre polynomials of degree 𝑙. The quantities 𝑥 and 𝜇 ∈  [−1; +1] are the spatial 

coordinate and the direction variable, respectively, and 𝜓(𝑥,  𝜇) is the neutron flux. 

To solve Equation (1), the method of separation of variables is applied by the substitution 

𝜓(𝑥,  𝜇) = 𝜙𝜉(𝜇) 𝑒
−𝛴𝑇 𝑥
𝜉  , (2) 

that yields 

1

𝜇
 𝜙𝜉(𝜇)   −  

𝑐

2𝜇
 ∑𝑏𝑙  𝑃𝑙(𝜇)

𝐿

𝑙=0

  ∫ 𝑑𝜇′
1

−1

 𝑃𝑙(𝜇
′) 𝜙𝜉(𝜇

′)  =  
1

𝜉
 𝜙𝜉(𝜇) 

. (3) 

 

At this point, the recursion relations for Legendre polynomials are applied along with some 

algebraic manipulations to obtain the transcendental equation 

𝑐 𝜉

2
 ∑𝑏𝑙

𝐿

𝑙=0

  ∫ 𝑑𝜇′
1

−1

 𝑃𝑙(𝜇
′) 𝜙𝜉(𝜇

′) ∫ 𝑑𝜇
1

−1

 
𝑃𝑙(𝜇)

𝜉 − 𝜇
  −  1  =  0     ,      𝜉 ∉ [−1; 1] , (4) 

 

whose roots are the discrete values of ξ and appear in ± pairs. Moreover, if 𝜉 is a complex number, 

then its complex conjugate 𝜉̅ is also a root. 

From the material properties of the media (i.e., values of 𝑐 and 𝑏𝑙), one can deduct the type of the 

roots of Equation (4). Table 1 summarizes results for different anisotropy orders: isotropic scattering 

(𝐿 = 0) [1], linearly anisotropic scattering (𝐿 = 1) [6], and quadratic (𝐿 = 2) and triplet (𝐿 = 3) 

anisotropic scattering [4]. 
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Table 1: Discrete eigenvalues under different conditions. 

 Conditions Discrete eigenvalues 

𝐿 = 0 

𝑐 > 1 one pair of real roots ± 𝜉0  

𝑐 < 1 one pair of imaginary roots ± 𝜉0  

𝐿 = 1 

𝑐 > 1 one pair of real roots ± 𝜉0  

𝑐 < 1, 𝑏1 < 0 one pair of imaginary roots ± 𝜉0  

𝑏1 > 0, 1 <  𝑐 < 1 + 1 𝑏1⁄  one pair of imaginary roots ± 𝜉0  

𝑏1 > 0, 𝑐 > 1 + 1 𝑏1⁄  one quartet or two pairs of roots 

𝑏1𝑐 < 3 one real and one imaginary 

𝑏1𝑐 > 3 both imaginary or both real 

𝐿 = 2 

𝑐 > 1 one pair of real roots ± 𝜉0  

𝑐 < 1, 𝑏2 < 0 one pair of imaginary roots ± 𝜉0  

𝑏2 > 0, 1 <  𝑐 < 2 3⁄ (1 + 1 𝑏2⁄ ) one pair of imaginary roots ± 𝜉0  

𝑏2 > 0, 𝑐 > 2 3⁄ (1 + 1 𝑏2⁄ ) one quartet or two pairs of roots 

𝑏2𝑐 < 5 one real and one imaginary 

𝑏2𝑐 > 5 both imaginary or both real 

𝐿 = 3 

𝑐 > 1 one pair of real roots ± 𝜉0   

𝑐 < 1, 𝑏3 < 0 one pair of imaginary roots ± 𝜉0   

𝑏3 > 0, 1 <  𝑐 < 6 11⁄ (1 + 1 𝑏3⁄ ) one pair of imaginary roots ± 𝜉0   

𝑏3 > 0, 𝑐 > 6 11⁄ (1 + 1 𝑏3⁄ ) one quartet or two pairs of roots 

𝑏3𝑐 < 7 one real and one imaginary 

𝑏3𝑐 > 7 both imaginary or both real 
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Source: Data from the work by Sahni and Tureci [4].
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2.1. Spectral analysis of the 𝑺𝑵 transport equations 

The time–independent multigroup 𝑆𝑁 BTE with 𝐿 −'th order of anisotropy on both the scattering 

and fission terms within a region 𝛶 of a multiplying slab [9, 10] is considered with appropriate 

boundary conditions 

𝜇𝑚
𝑑

𝑑𝑥
𝜓𝑚𝑔(𝑥) + 𝛴𝑇 𝑔  𝜓𝑚𝑔(𝑥)  =  ∑

2𝑙 + 1

2

𝐿

𝑙=0

 𝑃𝑙(𝜇𝑚) ∑ 𝛴
𝑆𝑔′→𝑔

(𝑙)

𝐺

𝑔′=1

∑𝑃𝑙(𝜇𝑛)

𝑁

𝑛=1

 𝜔𝑛 𝜓𝑛𝑔′(𝑥) 

+ 
𝜒𝑔

𝑘𝑒𝑓𝑓
∑

2𝑙 + 1

2

𝐿

𝑙=0

 𝑃𝑙(𝜇𝑚) ∑ 𝜈𝑔′

𝐺

𝑔′=1

 𝛴
𝑓 𝑔′
(𝑙)

∑𝑃𝑙(𝜇𝑛)

𝑁

𝑛=1

 𝜔𝑛 𝜓𝑛𝑔′(𝑥)    ,  

𝑥 ∈ 𝛶  ,     𝑚 = 1:𝑁   ,     𝑔 = 1: 𝐺  .  

 (5) 

The angular quadrature of order 𝑁 is defined by the discrete directions (𝜇𝑚) and their associated 

weights (𝜔𝑚). The quantity 𝜓𝑚𝑔(𝑥) is the angular flux of particles with energy within the group 𝑔 

traveling in direction 𝜇𝑚; 𝜒𝑔 represents the spectrum of neutrons appearing in group 𝑔 due to fission; 

𝛴
𝑆𝑔′→𝑔

(𝑙)
 and 𝛴

𝑓 𝑔′
(𝑙)
 are the Legendre moments of the macroscopic differential scattering and fission 

cross section, respectively; 𝜈𝑔′  is the average number of neutrons in group  𝑔′ released in each fission 

reaction; and 𝑘𝑒𝑓𝑓 is the multiplication factor. 

Equation (5) can be rewritten aiming an analogous form to Equation (1) for the monoenergetic 

analytic problem as 

𝜇𝑚
𝑑

𝑑𝑥
𝜓𝑚𝑔(𝑥) + Σ𝑇 𝑔 𝜓𝑚𝑔(𝑥)  = ∑

𝑐𝑔′→𝑔 Σ𝑇 𝑔′

2

𝐺

𝑔′=1

 ∑  𝑏
𝑔′→𝑔

(𝑙)  𝑃𝑙(𝜇𝑚)

𝐿

𝑙=0

 ∑𝑃𝑙

𝑁

𝑛=1

(𝜇𝑛) 𝜔𝑛 𝜓𝑛𝑔′(𝑥)   , 

𝑥 ∈ 𝛶  ,     𝑚 = 1:𝑁   ,     𝑔 = 1: 𝐺   ,   

 

(6) 

with the definitions: 

𝑐𝑔′→ 𝑔   =   

𝛴
𝑆𝑔′→ 𝑔

(0)
+
𝜒𝑔  𝜈𝑔′  𝛴𝑓 𝑔′

(0)

𝑘𝑒𝑓𝑓

𝛴𝑇 𝑔′
 

 

and 

𝑏
𝑔′→𝑔

(𝑙)
 =  

{
 
 
 

 
 
 

1 , 𝑙 = 0  and  𝑔′ = 𝑔

0 , 𝑐
𝑔′→ 𝑔

=  0

(2𝑙 + 1) (Σ
𝑆𝑔′→𝑔

(𝑙)
+
𝜒𝑔  𝜈𝑔′  Σ𝑓 𝑔′

(𝑙)

𝑘𝑒𝑓𝑓
)

𝛴
𝑆𝑔′→ 𝑔

(0)
+
𝜒𝑔 𝜈𝑔′  𝛴𝑓 𝑔′

(0)

𝑘𝑒𝑓𝑓

, otherwise 

 

 

.  (7) 

 

To solve the homogeneous equation, Equation (6), it is considered the function 
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𝜓𝑚𝑔(𝑥)  =   𝑎𝑚𝑔(𝜉)  𝑒
−
 𝑥
 𝜉 . (8) 

 

It is noteworthy that Equation (8) is analogous to the ansatz in Equation (2). Now, this expression is 

substituted into Equation (6) to obtain, after some operations, an eigenvalue problem of order 𝑁𝐺 

∑ ∑{𝛿𝑚,𝑛  𝛿𝑔,𝑔′  
𝛴𝑇 𝑔
𝜇𝑚

 −  
𝑐𝑔′→𝑔 𝛴𝑇 𝑔′  𝜔𝑛

2𝜇𝑚
 ∑𝑏

𝑔′→𝑔

(𝑙)
 𝑃𝑙(𝜇𝑚) 𝑃𝑙(𝜇𝑛)

𝐿

𝑙=0

 } 𝑎𝑛𝑔′(𝜉)  =  
1

𝜉
 𝑎𝑚𝑔(𝜉)

𝑁

𝑛=1

𝐺

𝑔′=1

 . (9) 

By solving this eigenvalue problem, a set of 𝑁𝐺 linearly independent eigenfunctions defined in 

Equation (8) for 𝑥 ∈ 𝛶 is obtained. 

 

3. RESULTS AND DISCUSSION 

 

For high quadrature orders, the dominant eigenvalues obtained from the 𝑆𝑁 problem should agree 

with the discrete eigenvalues from the one–speed analytic problem. Sahni and Tureci [4] reported the 

discrete eigenvalues calculated considering several combinations of values of 𝑐 and 𝑏𝑙 for three test 

cases: (a) linearly anisotropic scattering (𝑏0, 𝑏1 ≠ 0 , otherwise 𝑏𝑙 = 0), (b) isotropic+pure quadratic 

scattering (𝑏0 , 𝑏2 ≠ 0 , otherwise 𝑏𝑙 = 0), and (c) isotropic+pure triplet scattering (𝑏0, 𝑏3 ≠ 0 , 

otherwise 𝑏𝑙 = 0).  

The eigenvalue problem from the 𝑆𝑁 BTE, Equation (9), was solved for all the examples reported 

by Sahni and Tureci [4]. It was started at low orders of the Gauss–Legendre quadrature that were 

increased up to obtain 𝑆𝑁 results in agreement with the discrete Case's spectrum within a range of 

less than 100 𝑝𝑐𝑚. The RMatrixEVD subroutine from the ALGLIB library [11] was used, in order to 

find the eigenvalues (real and imaginary parts) and eigenvectors of a general matrix. 

Tables 2 to 4 show the results obtained from solving the 𝑆𝑁 eigenvalue problem published by Sahni 

and Tureci [4]. In all cases, the moduli of the dominant eigenvalues and the relative deviations in 

𝑝𝑐𝑚 with respect to the reference values are presented. One can observe that for a quadrature order 

𝑁 = 64, the relative deviation is less than 80 𝑝𝑐𝑚 in all cases. 
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Table 2: The discrete eigenvalues for linearly anisotropic scattering (𝐿 =  1)𝑎 . 

𝒄 \ 𝒃𝟏 −0.9 0.6 0.9 

0.8 
1.269769136 1.5319699636 1.6087164379 

(0.03)𝑏 (0.04) (0.04) 

1.5 
0.5811518597𝑖 0.8120788574𝑖 0.9078974421𝑖 

(0.02) (0.005) (0.02) 

3.0 
0.2039774078𝑖 0.3248994249𝑖 1.0002732641 0.4254805876𝑖 1.2809237676 

(0.01) (0.01) (8.22) (0.04) (0.11) 

4.0 
0.1439582693𝑖 0.2399911569𝑖 1.1327124051 0.4026092026𝑖 0.5566781230𝑖 

(0.003) (0.02) (0.04) (0.27) (0.41) 

a Only the magnitude of real or purely imaginary eigenvalue pair is tabulated. 
b relative deviation (𝑝𝑐𝑚) with respect to the discrete analytic eigenvalue [4]. 

 

 

 

Table 3: The discrete eigenvalues for linearly anisotropic scattering (𝐿 =  2)𝑎 . 

𝒄 \ 𝒃𝟐 −1.0 0.5 1.5 

0.8 
1.3902078564 1.4187852618 1.4486484525 

(0.03)𝑏 (0.04) (0.04) 

1.5 
0.712095766𝑖 0.67386471𝑖 0.6317760051𝑖 1.0309375337 

(0.02) (0.01) (0.004) (0.004) 

3.0 
0.2785204395𝑖 0.2364960112𝑖 1.0057660256 0.2045765429𝑖 2.3007655785 

(0.005) (0.0001) (0.01) (0.003) (0.19) 

4.0 
0.2041791731𝑖 0.1664595861𝑖 1.0410302996 0.1415999511𝑖 1: 6038876543𝑖 

(0.003) (0.003) (0.001) (0.01) (0.15) 

a Only the magnitude of real or purely imaginary eigenvalue pair is tabulated. 
b relative deviation (𝑝𝑐𝑚) with respect to the discrete analytic eigenvalue [4]. 
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Table 4: The discrete eigenvalues for linearly anisotropic scattering (𝐿 =  3)𝑎 . 

𝒄 \ 𝒃𝟑 −1.0 0.5 1.0 

0.8 
1.4053567858 14090532489 1.4107235544 

(0.03)𝑏 (0.03) (0.03) 

1.5 
0.6841100404𝑖 0.6920605429𝑖 0.6953423810𝑖 1.0029060860 

(0.01) (0.01) (0.01) (0.125) 

3.0 
0.2399919939𝑖 0.585796957𝑖 1.0068223847 0.2663092301𝑖 1.0936625073 

(0.002) (0.004) (0.01) (0.01) (0.001) 

10.0 
0.0595745983𝑖 00713391099𝑖 1.4377274882 0.0778750654𝑖 19751716742𝑖 

(80.2) (26.0) (0.03) (13.0) (0.03) 

a Only the magnitude of real or purely imaginary eigenvalue pair is tabulated. 
b relative deviation (𝑝𝑐𝑚) with respect to the discrete analytic eigenvalue [4]. 

 

 

3.1. Solution to the 𝑺𝑵 BTE 

As a result of the previous analysis, in this subsection, a methodology to obtain the analytic solution 

to the slab–geometry multigroup 𝑆𝑁 BTE in multiplying media [12–14] is proposed. It is remarked 

that the presented procedures can also be used to derive the homogeneous component of the general 

solution in fixed–source problems [15–20]. Equation (5) can be represented in matrix form as 

𝑑

𝑑𝑥
𝚿  =  𝐌 𝚿 , (10) 

 

where 𝐌 is the 𝑁𝐺–order square matrix with entries 

 

𝑀𝑚𝑔, 𝑛𝑔′ =
1

𝜇𝑚
 {−𝛿𝑚,𝑛 𝛿𝑔,𝑔′  𝛴𝑇 𝑔 +∑

2𝑙 + 1

2
 𝑃𝑙(𝜇𝑚) 𝑃𝑙(𝜇𝑛) 𝜔𝑛

𝐿

𝑙=0

 [𝛴
𝑆𝑔′→𝑔

(𝑙)
+
𝜒𝑔

𝑘𝑒𝑓𝑓
𝜈𝑔′  𝛴𝑓 𝑔′

(𝑙)
]} 

 

 𝑚 = 1:𝑁  ,    𝑔 = 1: 𝐺  ,    𝑛 = 1:𝑁  ,    𝑔′ = 1: 𝐺  ,            (11)                               
 

and 𝚿 is a column matrix whose entries are 𝜓𝑚𝑔(𝑥). The solution to the homogeneous system of 

ordinary differential equations in Equation (10) can be written as 
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𝚿H(𝑥)  =  ∑α𝑘

𝑁𝐺

𝑘=1

 𝑣𝑘  𝑒
ξ𝑘  𝑥 , (12) 

where 𝑣𝑘 are the eigenvectors associated to the eigenvalues ξ𝑘 of matrix 𝑀. Depending on the material 

parameters, the 𝑁𝐺 eigenvalues ξ𝑘 can appear in ± real pairs, imaginary or complex conjugate. Since 

the input of matrix 𝑀 are real numbers, the real eigenvalues will be associated to real eigenvectors, 

and the complex conjugate eigenvalues will be associated to complex conjugate eigenvectors. 

As it is the case, when  𝜉 = 𝑝 + 𝑞𝑖  and 𝜉 = 𝑝 − 𝑞𝑖 are a pair of eigenvalues, the eigenvectors 

associated to 𝜉 and 𝜉 are 𝐯 = 𝐚 + 𝐛𝑖 and 𝐯 = 𝐚 − 𝐛𝑖, respectively [21]. After some operations, two 

real–valued solutions are obtained 

𝚿1(𝑥)  =   (𝑎  cos 𝑞𝑥 − 𝑏  sin 𝑞𝑥) 𝑒
𝑝 𝑥        and         𝚿𝟐  =   (𝑏  cos 𝑞𝑥 + 𝑎  sin 𝑞𝑥) 𝑒

𝑝 𝑥 . (13) 

Therefore, if 𝐾𝑅 real eigenvalues and 𝐾𝐶 complex conjugate pairs are found, i.e., 𝐾𝑅 + 2𝐾𝐶 = 𝑁𝐺, a 

set of 𝑁𝐺 linearly independent eigenfunctions is obtained, and the solution to Equation (5) within 

region 𝛶 is 

𝚿H(𝑥) = ∑𝛼𝑘

𝐾𝑅

𝑘=1

𝐯𝑘  𝑒
𝜉𝑘 𝑥

+∑{𝛽𝑗  (𝐚𝑗 cos 𝑞𝑗𝑥 − 𝐛𝑗 sin 𝑞𝑗𝑥) + 𝛽𝑗
′ (𝐛𝑗  cos 𝑞𝑗𝑥 + 𝐚𝑗  sin 𝑞𝑗𝑥)}

𝐾𝐶

𝑗=1

 𝑒𝑝𝑗 𝑥 

(14) 

where 𝛼𝑖, 𝛽𝑗 and 𝛽𝑗
′ are arbitrary constants to be determined. Equation (14) can be represented in 

matrix form as 

𝚿(𝑥)  =   [𝐌𝐑 𝐈𝑒cos(𝑥)  +  𝐍𝐑 𝐈𝑒sin(𝑥)] 𝛂 , (15) 

with the definition of matrices 

𝐌𝐑  =  [

v1,1 ⋯ v1,𝐾𝑅
⋮ ⋱ ⋮

v𝑁𝐺,1 ⋯ v𝑁𝐺,𝐾𝑅

    

a1,1 b1,1 ⋯

⋮ ⋮ ⋱
a𝑁𝐺,1 b𝑁𝐺,1 ⋯

   

a1,𝐾𝐶 b1,𝐾𝐶
⋮ ⋮

a𝑁𝐺,𝐾𝐶 b𝑁𝐺,𝐾𝐶

] , 
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𝐍𝐑  =  [
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

    

−b1,1 a1,1 ⋯

⋮ ⋮ ⋱
−b𝑁𝐺,1 b𝑁𝐺,1 ⋯

   

−b1,𝐾𝐶 a1,𝐾𝐶
⋮ ⋮

−b𝑁𝐺,𝐾𝐶 a𝑁𝐺,𝐾𝐶

] , 

 

 𝐈𝑒cos(𝑥)  = 𝑑𝑖𝑎𝑔 {𝑒
𝜉1𝑥 , ⋯ , 𝑒𝜉𝐾𝑅𝑥 , 𝑒𝑝1𝑥cos 𝑞1𝑥 , 𝑒

𝑝1𝑥cos 𝑞1𝑥 ,⋯ , 𝑒
𝑝𝐾𝐶𝑥cos 𝑞𝐾𝐶𝑥 ,  𝑒

𝑝𝐾𝐶𝑥cos 𝑞𝐾𝐶𝑥}  , 

 

 𝐈𝑒𝑠𝑖𝑛(𝑥)  = 𝑑𝑖𝑎𝑔 {0,⋯ , 0 ,  𝑒𝑝1𝑥𝑠𝑖𝑛 𝑞1𝑥 , 𝑒
𝑝1𝑥𝑠𝑖𝑛 𝑞1𝑥 ,⋯ ,  𝑒

𝑝𝐾𝐶𝑥𝑠𝑖𝑛 𝑞𝐾𝐶𝑥 ,  𝑒
𝑝𝐾𝐶𝑥𝑠𝑖𝑛 𝑞𝐾𝐶𝑥}  

 

and 

 𝛂 =  [𝛼1 , ⋯ , 𝛼𝐾𝑅  , 𝛽
1
 , 𝛽

1
′  , ⋯ , 𝛽

𝐾𝐶
 , 𝛽

𝐾𝐶

′
]
𝑇

 . 

 

The terminology presented here for the spectral analysis can be used in the development and 

implementation of spectral nodal methods to obtain accurate and efficient numerical solutions to the 

𝑆𝑁 BTE in slab–geometry. It is noteworthy that the notation used here is general and compact, 

nevertheless, it can be modified, and one should perform the construction of the matrices and the 

order of the operations aiming at computational efficiency. 

 

 4. CONCLUSION 

 

In this paper, the spectral analysis of the 𝑆𝑁 BTE with anisotropic scattering has been performed 

and the results with the discrete Case's eigenvalues from the analytic transport problem have been 

compared. As one could anticipate, for a quadrature order high enough, the dominant 𝑆𝑁 eigenvalues 

agree with the discrete spectrum. A simplification for the procedures to obtain the analytic solution 

of the 𝑆𝑁 BTE considering high–order anisotropic events in the scattering and fission sources was 

also presented. This simplification has been presented in a compact form and includes the possibility 

of obtaining complex eigenvalues from the spectral analysis. The present methodology shall be 

applied not only to slab–geometry problems but also to multidimensional spectral nodal methods that 

use transverse integration procedures. 
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