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ABSTRACT 
 
In this work, the Neutron Point Kinetics equations are solved for six groups of delayed neutron precursors and 

different types of ramp reactivity, considering the temperature effects by the Rosenbrock’s method, to verify the 

methodology. Furthermore, the classical model is solved by inserting the effects of the main neutron poisons, 

considering constant reactivity for a group of precursors. The simulation consists of inserting a negative constant 

reactivity, simulating a reactor in its shutdown phase. Then, positive constant reactivity is inserted, simulating 

power resumption in a reactor already poisoned, to analyzing the final behavior of the neutron density. The 

simulation achieved its goal of simulating the behavior of the neutron poisons, so that the graphs make physical 

sense as expected. Therefore, it was found that the proposed method overcame the stiffness of the Neutron Point 

Kinetics model, and also solved a nonlinear problem by the inclusion of temperature and neutron poisons in the 

system. 

Keywords in english: Rosenbrock’s Method, Neutron Point Kinetics, Temperature feedback, Neutron poisons. 
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1. INTRODUCTION 
 

The safety of a nuclear power plant is an extremely relevant topic in reactor physics. In a plant, 

more specifically inside the reactor core, there must be an equilibrium in the neutron balance, 

referring to the loss and gain of neutrons, ensuring control in the chain reaction for energy 

generation.It is in this sense that researchers in the area have invested in studies through models and 

mathematical methods that describe accurately, quickly and reliably the physical situation of the 

problem, important for decision making and operational control of a nuclear power plant.  

athematical models in nuclear reactor physics must take into account all aspects, variables and 

possible modifications in the reactor structure by internal and external agents, influencing the 

nuclear reaction and, consequently, the final analysis in the overall reactor behavior.   

The most complete physico-mathematical model, when time-dependent and considering delayed 

neutrons [1], which determines the neutron population is known as the Neutron Transport equation. 

However, this model becomes impossible to solve when considering in its composition angular, 

energy, spatial and temporal variation in the equations. However, simpler models can be obtained 

from coherent physical simplifications of this equation. One of the commonly used approximations 

is to treat the transport equation as a diffusive process, known as the neutron diffusion equation [2]. 

Even so, according to the literature, other models have been ensuring the simulation of the transient 

behavior of nuclear reactors, important for reactor control. These models can be obtained through 

the Kinetics equations, which can be divided into the equations of the Neutron Point Kinetics 

(NPKE) and the equations of the Neutron Spatial Kinetics (NSKE). The Neutron Space Kinetics 

equations consider both the variation of the flux with time and its spatial deformity, while the Point 

Neutron Kinetics equations are exclusively interested in the variation of the flux amplitude with 

time, making these equations exclusively time-dependent.  In this work, the model employed is that 

of Neutron Point Kinetics considering temperature effects and, subsequently, neutron absorbers 

poisons. 

The Neutron Point Kinetics equations form a system of coupled ordinary differential equations 

(ODEs) that describe the neutron density and the concentration of delayed neutron precursors [3]. 
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Although a relatively simple model, it plays a very important role in reactor physics as it can be 

used, when solved properly, for near real-time prediction of the reactor power transient [3], 

important for reactor decision making and control. 

The effects of temperature have an important influence on the operation of a reactor and the 

safety of the system. The insertion of temperature feedback causes relevant changes in the neutron 

flux that, consequently, according to Silva [4], alter the power of the reactor. The same happens 

with the presence of fission product poisons in the reactor core. The poisons xenon-135 and 

samarium-149 have high neutron absorption cross-sections that can delay the reactor response time 

for the safe resumption of power. 

The accident at Chernobyl, for example, had as one of the causes of its occurrence the neglect of 

the effects of core poisoning during a safety test. The positive reactivity inserted was not able to 

overcome the negative reactivity arising from the absorbers poisons, causing the reactor to shut 

down. As a result, numerous test procedures and safety regulations were violated in an attempt to 

compensate for the negative reactivity caused by the poisoning in the core. Due to the irregular 

procedures taken, various thermal-hydraulic problems began to appear in the system, leading to a 

series of events leading up to the accident. 

In the literature some works address the model of the Neutron Point Kinetics coupled with 

temperature effects, such as Tashakor et al. [5] that develop a numerical solution, taking into 

account, besides the temperature feedback, the fuel burning, using only one group of delayed 

neutron precursors. In Silva [4] the decomposition method presented in Petersen [6] is used to 

obtain an analytical solution of the problem, where the nonlinearity is treated using Adomian 

polynomials. Tumelero [7] presents a solution of the equations of the Neutron Point Kinetics 

applying the polynomial approximation method, also considering the temperature effects. 

In the literature, there are also works involving the effects of poisons in the nuclear reactor. We 

point out that simulations with the coupling of the effects of the main neutron absorbers poisons to 

the Point Kinetic Model are not very common in the literature. Few works bring these simulations, 

to verify the validity of the methodologies and the physical meaning of the results. Among them, we 

can mention that of Espinosa [8] that works with the Neutron Point Kinetic equations taking into 

account the effects of xenon-135 and samarium-149 poisons, in which the new system of equations 

is solved through a decomposition method, which expands the nonlinear terms in an infinite series 
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obtaining a recursive system, treating the nonlinearity by Adomian polynomials. Recently, Paganim 

et al. [9] solve the NPKEs considering not only the effects of the main neutron poisons, but also the 

effects of some transuranics by the same method of Espinosa [8], obtaining results consistent with 

the expected ones. 

The Neutron Point Kinetics equations have a fundamental characteristic due to the difference in 

the lifetimes of prompt and delayed neutrons, called stiffness. With this, numerical methods that 

could overcome it were sought in the literature. The Rosenbrock’s method (ROS) has been shown 

in the literature to be satisfactory in the solution of stiff problems. Galina [10] presents numerical 

solutions for stiff radioactive decay chain problems involving natural and artificial chains through 

the Rosenbrock’s method, producing consistent results.  Recently, in chemical kinetics, Sehnem 

[11] uses the method to solve a stiff system of ordinary differential equations to moderate the 

degree of stiffness and decrease the number of species involved in the combustion of the element 

methane. In the work of Yang and Jevremovic [12], the Rosenbrock’s method is used to solve the 

Neutrons Point Kinetics equations itself with different types of reactivity insertions, in which the 

results are compared with reference data in the literature, considered a benchmark in reactor 

physics. 

In this work, the goal is to highlight the importance of considering in the model the effects of 

both temperature and fission product poisons in the final behavior of the neutron density. For this, 

the equations of the Neutron Point Kinetics are solved considering the temperature effects, to verify 

the methodology, by the Rosenbrock’s method of fourth-order and four stages, comparing with the 

EPCA method of Picca et al. [13]. Subsequently, the effects of the main neutron absorbers poisons 

are coupled to the model, simulating two cases of reactivity: negative and positive constant. 

 

2. MATERIALS AND METHODS 
 

2.1. The Model with Temperature Feedback  

      The reactor is assumed to have a negative temperature coefficient (α). That is, when a small 

perturbation in reactivity is inserted, considering temperature feedback, the actual reactivity of the 

reactor is 
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,  

where  is a constant and  is the initial temperature of the system.   

      After the reactivity be inserted into the reactor the adiabatic model is still employed, so, has 

been: 

, 

where  is the reciprocal of the reactor heat capacity. Combining (1) and (2), one has: 

. 

  Renaming , results in: 

, 

where is called the “shutdown coefficient”. 

      Thus, considering the Point Kinetics equations and the Newtonian feedback model, the 

following system of ordinary differential equations is obtained: 

,                                                

for , where  given in  is the neutron density in time ,  is the time and 

density dependent reactivity,  the total fraction of delayed neutrons,  given in  is the mean 

generation time between neutron birth and subsequent collision,  given in  are the 

radioactive decay constants for each group  of precursors, given in  are the delayed 

neutron precursor concentrations for each group  at time . 

      Consider the following initial conditions for the system described in Equation (5): 
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,                                                              

     for .  Thus, rewriting Equation (5) in matrix form, we have: 

,                                                                   

where 

, and .       

 

2.2. The Model with the Effects of Neutron Absorbers Poisons  

      The Neutron Point Kinetics model coupled with the effects of the fission product poisons is 

presented in Equation (9). Due to the effects of the poisons xenon-135 and samarium-149 have high 

neutron absorption cross-sections, it is relevant to include two loss terms in the density variation 

equation.  Thus, we have the following system of equations 
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,                     

where  given in  is the velocity of the neutron,  given in  is the macroscopic 

cross-section of fission,  given in  is the delayed neutron precursor decay constant,  
given in  is the concentration of delayed neutron precursors at time ,  given in  

is the microscopic cross-section of absorption of the element xenon-135,  given in  is 
the concentration of xenon-135 in time ,  given in  is the microscopic cross-section of 

absorption of samarium-149,  given in  is the concentration of samarium-149 in time 
,  is the fission yield of the nuclide iodine-135,  given in  is the radioactive decay 

constant of iodine-135,  given in  is the concentration of iodine-135 at the instant , 
 is the fission yield of the nuclide xenon-135,  given in  is the radioactive decay 

constant of xenon-135,  is the fission yield of the nuclide promethium-149,  given in 
 is the concentration of promethium-149 in time  e  given in  is the radioactive 

decay constant of promethium-149. 
 
      Considering the following initial conditions for the system of equations in (9): 
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 . 

      Similarly, we rewrite Equation (9) in its matrix form, where we separate the linear part from the 

nonlinear terms of the system 

,                                                   

where 

,  and 
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2.3. Rosenbrock’s Method 

      Rosenbrock’s methods belong to one of the classes of Runge-Kutta methods. Consist in 

linearizing the implicit Runge-Kutta methods, thus facilitating the implementation of the code, since 

instead of solving nonlinear systems, a sequence of linear systems is solved. 

The solution of the systems in (5) and (9) at each time step is given by 
 

,                                                               
                                                

where  is the initial time,  is the size of the integration step,  are the method coefficients and 

the  are the vectors corresponding to the stage of the method.   

The structure of Rosenbrock's method adapted and used in this paper is found in Yang and 

Jevremovic [12], defined as: 

,          

where ,  is the identity matrix,   is one of the roots of the Laguerre 

polynomial and  is the Jacobian matrix, where  and  is the solution 

evaluated at  for each  in the mesh. The values of the other parameters of the method can be 

found in Yang and Jevremovic [12]. 
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3. RESULTS AND DISCUSSION 
 
      In this section, the results are presented for the model with temperature feedback and, 

subsequently, for the model coupled to the effects of the main neutron absorbers poisons. The 

software used to implement the algorithm was SciLab 6.0.2 (http://www.scilab.org/). 
 

3.1. Temperature Feedback Model 

     In this case of ramp reactivity insertion with Newtonian feedback, the kinetic parameters from 

Table 5 found in Tumelero [7] are used. We emphasize that the work of the reference [7] makes a 

broad systematic review of the main methodologies already used to solve the Point Kinetics 

equations over the years. Therefore, this paper compiles the main cases and core parameters to 

verify the proposed methodologies. 

       The initial conditions used are:  and . Four values are considered for 

reactivity, , ,  and , and two values for the parameter  

, and .  The " " is the time variable indicating that the reactivity is expressed 

in linear form. It is worth noting that reactivity is a dimensionless quantity that represents how far 

the system is from criticality, i.e., it is nothing more than a relative deviation. There are some units 

assigned to it, such as the Dollar ($) that was used, which is equivalent to β. 

      The results obtained for the neutron density with their respective deviations are presented in 

Tables 1 and 2, considering the time step of .  

   The results are compared with the improved constant piecewise constant approximation (EPCA) 

method of Picca et al. [13]. The EPCA method [13] is considered a "benchmark" in reactor physics 

for its history and excellent contributions in the area. Therefore, we can consider them as good 

references for validation of the methodology. 
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Table 1:  Neutron density in with feedback, for and different cases of ramp-type 
reactivity. 

Reactivity  ROS EPCA Relative  
    Deviations 
 0.1 24.7336582 24.7336582 0 
 0.5 9.94989333E+09 9.94989324E+09 9.0453231837E-09 

 5 1.00297404E+10 1.00297404E+10 0  
 7.5 1.00179842E+10 1.00179842E+10 0 
 10 1.00118861E+10 1.00118861E+10 0 
 0.1 1.167210837 1.167210838 8.5674324418E-10 
 0.5 4.269952844 4.269952844 0 

 5 1.033798290E+09 1.033798290E+09 0 
 7.5 1.019490285E+09 1.019490285E+09 0 
 10 1.012431671E+09 1.012431671E+09 0 
 0.1 1.045371666 1.045371666 0 
 0.5 1.324661984 1.324661985 7.5490956283E-10 

 5 3.29326626E+08 3.293266270E+08 3.0364990802E-09 
 7.5 3.22719218E+08 3.227192182E+08 6.1973377698E-10  
 10 3.14593641E+08 3.145936416E+08 1.9072222723E-09 
 0.1 1.014717771 1.014717771 0 
 0.5 1.089821393 1.089821394 9.1758154639E-10 

 5 14.16371139 14.16371139 0 
 7.5 1.259267838E+09 1.259267838E+09 0 
 10 1.59005860E+08 1.590058602E+08 1.2578152764E-09  
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Table 2:  Neutron density in with  feedback, for and different cases of ramp-type 
reactivity. 

Reactivity  ROS EPCA Relative  
    Deviations 
 0.1 24.73365825 24.73365830 2.0215367817E-09  
 0.5 1.543361792E+12 1.543361754E+12 2.4621576828E-08  

 5 1.002974092E+12 1.002974092E+12 0 
 7.5 1.001798437E+12 1.001798437E+12 0 
 10 1.001188620E+12 1.001188621E+12 9.9881279014E-10  
 0.1 1.167210837 1.167210838 8.5674324418E-10  
 0.5 4.269952864 4.269952865 2.3419462266E-10  

 5 1.033889665E+11 1.033889665E+11 0 
 7.5 1.019499912E+11 1.019499913E+11 9.8087306065E-10  
 10 1.012434883E+11 1.012434883E+11 0 
 0.1 1.045371666 1.045371667 9.5659757344E-10  
 0.5 1.324661986 1.324661986 0 

 5 3.215676113E+10 3.215676113E+10 0 
 7.5 3.210205182E+10 3.210205182E+10 0 
 10 3.145614686E+10 3.145614687E+10 3.1790289005E-10  
 0.1 1.014717771 1.014717771 0 
 0.5 1.089821394 1.089821395 9.1758154555E-10 

 5 14.16371386 14.16371386 0 
 7.5 8.361617706E+09 8.361617606E+09 1.1959408419E-09  
 10 1.615876766E+10 1.615876767E+10 6.1885907417E-10 

 

     Tables 1 and 2 show that the results obtained are excellent when compared to the EPCA method, 

with the largest relative deviation of 2.4621576828E-08. In general, in most cases, there is an 

approximation of all decimal places when comparing the results to the EPCA method.  

      The EPCA method is a semi-analytical method based on a piecewise constant approximation. It 

consists in finding the solution iteratively in each time step, considering a sub-mesh to improve the 

accuracy of the numerical quadratures. In this way, the solutions found are highly accurate. 

Rosenbrock's method, on the other hand, provides an L-stable numerical solution (ideal for stiff 

problems) and uses only one Newton iteration per integration step, and can achieve both accuracy 

and stability. Note that these are different approaches, but they achieve several digits of accuracy. 

     In this sense, it is noted that Rosenbrock's method produced excellent results when compared 

with those in the literature by solving a nonlinear problem when considering temperature effects 
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and also with time dependence in reactivity. Furthermore, the results obtained served to verify the 

methodology proposed in this work. 
 

3.2. The Model with the Effects of Neutron Absorbers Poisons 

     In the first simulation case considering the effects of poisons, a low-power reactor with negative 

reactivity was considered, ,  generated by  for neutron density, delayed neutron 

precursor concentration, and for the concentration of xenon-135. For the concentration of 

samarium-149, the graph was generated until .  It is emphasized that the same approach of 

Espinosa [8] was followed, in which reactivity is decomposed into short and long scale 

contributions. The first represents the operational control of the reactor, while the second occurs due 

to the variation of the chemical composition of the nuclear fuel as a consequence of decay. 

     The following kinetic parameters were used: ,  and  

 with initial conditions and nuclear parameters found in Paganim et al. [9]. 

      As previously mentioned, there are not many works in the literature that take into account the 

effects of poisons on NPKEs, at least not to the authors' knowledge. In this sense, the kinetic 

parameters used in [9] have physical plausibility with the simulation proposed in this work. 

     The plots for neutron density, delayed neutron precursor concentration, xenon-135 and 

samarium-149 concentration are shown in Figure 1. It is observed from Figure 1 items (a) and (b) 

that neutron density and delayed neutron precursor concentration have similar behavior. Both decay 

after a while, due to negative reactivity, causing the reactor to shutdown, tangenting the abscissa 

axis around and reaching the absolute value of zero at . 

      When the neutron density begins to tangent the abscissa axis, that is, its value is practically zero 

mathematically, physically the reactor is shutdown. It can be interpreted that a residue occurs 

between the mathematical solution and the one that physically occurs due to the exponential decay 

of the solution. After the reactor is shut down (when mathematically the solution approaches zero at 

about ), the concentration of Xe-135 continues to increase until it reaches its peak at about ten 

hours, due to the absence of xenon-135 consumption by radiative capture and production through 

iodine-135 decay. However, it is observed that the concentration of xenon-135 remains in the 

reactor for up to eighty hours, about three days, decreasing its concentration by the reduction of 
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iodine-135 and by its decay. A resumption of power during this period of contamination would 

require more neutrons to compensate for the negative reactivity caused by the poisoning. Therefore, 

it is important to wait at least three days for the safe restart of a nuclear reactor after a shutdown. 

     The samarium-149 (item (d)), unlike xenon-135, grows up to a certain value and stabilizes after 

a while, approaching a constant value in its concentration during the operation of the reactor until 

the complete decay of promethium-149. This happens because the element samarium-149 is stable 

through its decay chain, and the constant value that will be reached depends on the previous power 

of the reactor. 

     In the second simulation case, we used as initial condition the results at instant  of the first 

case. The simulation consists of restarting the reactor before the xenon-135 is consumed. For this 

purpose, a positive reactivity was inserted,   to capture the effects of neutron absorbers 

poisons on the resumption of power in an already contaminated reactor.  

     The results of the behavior of neutron density, precursor concentration, iodine-135 

concentration, xenon-135 concentration, promethium-149 concentration and the element samarium-

149 are presented in Figure 2. 
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Figure 1: Graphics for reactivity , (a) Neutron Density, (b) Precursor concentration,  
(c) iodine-135 concentration, (d) xenon-135 concentration and (e) samarium-149 concentration. 
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Figure 2: Graphics for reactivity , (a) Neutron Density, (b) Precursor concentration,  (c) 
iodine-135 concentration, (d) xenon-135 concentration, (e) promethium-149 concentration and (f) 

samarium-149 concentration. 
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     The initial conditions imposed on the reactor describe a system already contaminated by the 

neutron absorbers poisons, where the reactor was already shutdown.  

    It can be seen from the graphs shown in Figure 2 that the positive reactivity caused an increase in 

neutron density and precursor concentration, peaking near as shown in Figure 2 (a) and in the 

delayed neutron precursor concentration, Figure 2(b). This increase consequently raised the number 

of fissions and, in turn, the production of the element promethium-149 (Figure 2 (e)), which peaked 

at approximately  As a result, the nuclide samarium-149 (Figure 2 (f)) began to grow sharply, 

capturing neutrons and causing the density value to decrease. It is also possible to observe that 

neutron capture poisoning occurs from xenon-135 (Figure 2 (d)), which is produced by fission 

(before shutdown) and decay of iodine-135 (Figure 2 (c)). When the reactor shuts down, the xenon-

135 continues to grow because radiative capture no longer occurs and is fueled by the decay of 

iodine-135, peaking at approximately  

     We emphasize that there is no restriction to generate results by increasing the time interval. In 

fact, the idea in the future is to simulate the effects of the main neutron absorbers poisons in the 

Chernobyl accident, which had its significant increase after  of the reactor operating at half the 

designed power.  

4. CONCLUSIONS 
 

      In this paper, the solution of the Neutron Point Kinetics equations coupled to temperature 

effects with ramp-type reactivity for six groups of delayed neutron precursors by the Rosenbrock’s 

method was presented. We also solved the Point Kinetics model considering the effects of the main 

neutron absorbers poisons for one precursor group and constant reactivity.  

      The choice of an L-stable method was to guarantee future solutions for stiff problems, 

considering simulations for large amounts of hours. Moreover, as it is intended to simulate the 

Chernobyl accident, considering the effects, not only of the main neutron absorbers poisons, but 

also of the influence of temperature and more precursor groups, a methodology capable of 

providing accurate, stable and timely manner results were sought. 

,60h

.60h

.70h

h10
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     In general, the ease of implementation of the algorithm, the possibility of using adaptive time-

stepping since it is a single-step method, in addition to the good results in the literature when 

solving stiff problems, made Rosenbrock's method the choice for the solution of the models 

proposed in this work. 

The results presented for the model with temperature effects were excellent when compared to 

the literature. The stiffness of the system of ordinary differential equations was overcome by the 

implicit formulation of the method, emphasizing that these are also nonlinear problems.  

It is worth mentioning that the results obtained served to verify the methodology proposed in 

this work, making it feasible to solve the model coupled to the effects of the main neutron absorbers 

poisons.  

Therefore, it was proposed, after the verification of the methodology, to solve the Point Kinetic 

model coupled to the effects of the fission products poisons. The importance of this study comes to 

meet the need to perform a shutdown for recharge or maintenance of a nuclear reactor, where the 

importance of waiting for the decay time of the neutron absorbers poisons is highlighted for a safe 

and efficient resumption of power. In the literature, there are works done in this sense, but 

simulations have been presented that were previously unpublished in the literature, exemplifying 

this situation. Furthermore, the use of the Rosenbrock’s method to solve this problem, considering 

the neutron absorbers poisons, stands out as a novelty. 

It was found that the methodology achieved its goal by simulating the behavior of fission 

product poisons in such a way that the graphs have a physical meaning consistent with what is 

expected from ordinary differential equations.  

Fission product poisons play an extremely important role in balancing the neutron flux, in that 

they absorb neutrons, slowing the reactor response time due to this insertion of negative reactivity. 

The neglect of these effects of the poisoning at Chernobyl resulted in test procedures and safety 

regulations being broken in order to resume power to perform a test. After this, numerous system 

problems are detected that contribute to a completely unstable reactor leading to a thermal core 

explosion. 

Therefore, Rosenbrock's method obtained a remarkable performance in solving nonlinear 

problems, bypassing the degree of stiffness of the system of equations, making it feasible to use the 
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methodology for other cases of simulations, important for safety and decision making in reactor 

physics.  

As prospects, it is intended to expand the simulation with the effects of absorbers poisons, 

bringing a context of the Chernobyl disaster, from accident data present in the literature. 

Specifically, it is intended to simulate a power resumption after the decay time of the fission 

product poisons, to analyze the reactor response time in this scenario. 
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