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ABSTRACT 
 
Very High Temperature Gas Cooled Reactors - VHTGRs are studied by several research groups for the 

development of advanced reactors that can meet the world's growing energy demand. The analysis of the flow of 

helium coolant around the various geometries at the core of these reactors through computational fluid dynamics 

techniques is an essential tool in the development of conceptual designs of nuclear power plants that provide 

added security. This analysis suggests a close analogy with aeronautical cases widely studied using computational 

numerical techniques to solve systems of governing equations for the flow involved. The present work consists in 

using the DISSIPA2D_EULER code, to solve the Euler equations in a conservative form, in two-dimensional 

space employing a finite difference formulation for spatial discretization using the Euler method for explicit 

marching in time. The physical problem of supersonic flow of helium gas along a ramp and diffusor 

configurations is considered. For this, the Jameson and Mavriplis algorithm and the linear artificial dissipation 

model of Pulliam was implemented. A spatially variable time step is employed aiming to accelerate the 

convergence to the steady state solution. The main purpose of this work is obtained computational tools for flow 

analysis through the study the cited dissipation model and describe their characteristics in relation to the overall 

quality of the solution, as well as obtain preliminary results for the development of computational tools of 

dynamic analysis of helium gas flow in gas-cooled reactors. 

Keywords: VHTGRs, Euler Equations, Artificial Dissipation Model. 
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1. INTRODUCTION 
 

Work with numerical methods requires sensitivity on the part of the programmer regarding the 

suitability of the methods chosen to physical proposed situation. For simulations involving 

Computational Fluid Dynamics (CFD), it is necessary a previous knowledge of some key items 

about the type of flow and boundary conditions. However, a numerical scheme may present 

numerical instabilities associated with it, such as those that arise from the use of centered operators 

for spatial discretization, for example. One way to treat such instabilities is the introduction of 

artificial dissipation terms in order to provide the necessary stability in the numerical convergence 

scheme. [8]. 

Artificial dissipation operators are an important tool in working with numerical schemes of 

symmetric spatial discretization. These operators have the basic function of providing better 

treatment to the numerical instabilities inherent in the numerical method, present in the convergence 

process. In this way, these operators, distinguish different numerical damping types and produce 

appropriate damping quantities, allowing a better computational efficiency of the numerical 

scheme, resulting in more accurate solutions. 

Symmetric schemes with artificial dissipation operators properly formulated can lead to 

satisfactory results in terms of quality and quantity of the generated solution. The Jameson and 

Mavriplis scheme [1] is a example of a structured, symmetrical scheme with good resolution, which 

can lead to satisfactory results using suitable dissipation operators. The scheme was developed for 

problems in structured grids of triangles, but its extension to rectangle meshes in straightforward. 

Pulliam [12] presented an analysis between two artificial models used in symmetric algorithms 

with structured spatial discretization: both scalar and isotropic, being a linear and the other 

nonlinear. An implicit numerical scheme approximated factorized was used to perform numerical 

experiments in which dissipation artificial models were implemented in LHS (Left Hand Side), to 

increase the robustness and the convergence rate of the scheme. 

For the application and understanding of techniques widely used in aerospace engineering to 

study the helium flow around geometries presents in the core of the VHTGR, through the analysis 

of pressure and Mach number contours, preliminary tests on geometries of smaller degree of 
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complexity are needed, therefore, a ramp and diffusor configurations were adopted in this work by 

the simplicity in the visualization of the results. The present work is part of an extensive study that 

aims at the development of a computational tool for analysis of helium flow along a VHTGR 

channel, for better understanding of this event. 

The paper analyzes the DISSIPA2D_EULER code [9], generated from the implementation 

artificial dissipations models linear (studied in this paper) and nonlinear of Pulliam [12] in a finite 

difference context and using a generalized coordinate system, applied to the solution of a helium 

gas supersonic flow along a ramp and diffusor configurations. Its extension to other geometries as 

well as other regime flows (subsonic, hypersonic) is straightforward. The Jameson and Mavriplis 

algorithm [1] was used to perform the numerical experiments. The Euler equations are solved and a 

spatially variable time step was implemented to accelerate the convergence. This technique has 

proved excellent gains in terms of convergence ration as reported in [6]. The results have 

demonstrated that the isotropic linear scalar model of Pulliam [12] yielded converged solutions, in 

both cases (ramp and diffusor).  

More complete studies involving other different geometries and physical problems are aimed by 

this author with the intention of better highlighting the characteristics of these artificial dissipation 

model, aiming the extension to the study of transients in the VHTGR core. 

 

2. MATERIALS AND METHODS 

 

2.1. Euler Equations 

The Euler equations describing the motion of fluids, and expressing mass conservation, 

momentum and energy to a non-viscous, not heat-conducting and compressible medium in the 

absence of external forces. Depending on the complexity of the geometry to be worked, can be 

transformed of cartesian coordinates to generalized curvilinear coordinates, where: 

 

         (1) 

 

 

( ) ( )  ,     , ,         , ,t x y t and x y tt x x h h= = =
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In generalized curvilinear coordinates, the Euler equations take the following form: 

 

        (2) 

 

where  is the vector of conserved variables to a generalized curvilinear coordinate system,  and  

are the Euler flux vectors in the  and  directions, respectively. The ,  and  vectors are 

described below: 

 

     (3) 

 

where ρ is the fluid density, u and v are the cartesian components of the velocity vector in the x and 

y directions, respectively; e is the total energy, U and V are the contravariant velocities and  is the 

static pressure.  

The Jacobian of the coordinate transformation and the metric terms are defined as follows: 

 

     (4) 

 

The contravariant velocities, U and V, to a stationary mesh, are defined as: 

 

                 (5) 

 

To the studied problem, the Euler equations were nondimensionalized in relation to the 

freestream density, ρ∞, the freestream speed of sound, a∞. Hence, the density is nondimensionalized 

in relation to the ρ∞, the velocity components u and v are nondimensionalized in relation to the a∞, 

the pressure and the total energy are nondimensionalized in relation to the product ρ∞(a∞)2. The 
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matrix system of Euler equations is closed with the state equation to a perfect gas p = (γ −1)[e 

−0,5ρ(u2 + v2)], assuming the ideal gas hypothesis, where γ is the ratio of specific heats. The 

calculation domain is divided in a big number of the rectangular cells and the Equation (2) is 

applied for each cell (for this simulations, gamma for the helium gas was estimated in 1,67 with 

values for specific heats obtained in KTA [11]).  

 

2.2. Jameson and Mavriplis algorithm 

The spatial derivatives  and  can be approximated by central differences of second-order. 

Thus, Equation (2) can be rewritten as 

 

                  (6) 

  

where, 

 

                        (7) 

 

Thus, Equation (6) shall be written as follows: 

 

                (8) 

 

The introduction of a dissipation operator "D" is required in order to ensure numerical stability, 

for example, in the case of odd-even uncoupling of solutions and nonlinear instabilities, such as 

shock waves. Then Equation (8) is rewritten as: 

 

                (9) 
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where and  are operators in the ξ and η directions, respectively.   

 

2.3. Artificial dissipation operator 

The artificial dissipation model studied in this work is based on the Pulliam [12], and involves 

the isotropic artificial dissipation linear model, to provide dissipation to the numerical scheme. 

 

2.3.1. Isotropic scalar linear model of Pulliam (1986) 

The isotropic scalar linear artificial dissipation model of Pulliam (1986) consists in providing 

uniform dissipation in the calculation domain and in the four’s conservation equations, acting 

independently in each coordinate direction. In other words, the dissipation provided in the ξ 

direction takes into account a weighting over the information originating from the instabilities in the 

η direction with the same relative weight of the ξ direction, characterizing, hence, an isotropism of 

the model. 

 

     (10) 

 

The  parameter has its value adjusted through numerical experimentation. Due to the fact of 

does not exist distinction between the instabilities resulting from uncoupled solutions and the 

instability resulting from the shock wave presence, for example, Pulliam (1986) suggests the use of 

the isotropic scalar nonlinear model.  

 

2.4. Spatially variable time step 

The basic idea of this procedure consists in keeping constant the CFL number in all 

computational domain, allowing, hence, the use of appropriated time steps to each specific mesh 

region during the convergence process. 

 

                (11) 
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where CFL is the “Courant-Friedrichs-Lewy” number, to provide numerical stability to the scheme; 

 is the maximum characteristic velocity of information transport in the calculation domain; and 

 is a characteristic length of information transport. According to finite difference formalism, 

for a generalized curvilinear coordinates system, can be define = = =1 and 

. 

 

2.5. Initial and Boundary conditions 

 

2.5.1. Initial conditions 

Values of freestream flow are adopted for all properties as initial condition, in the whole 

calculation domain, to the physical problem studied in this work. The vector of conserved variables 

is expressed as follows [8]: 

 

                (12) 

 

where  represents the freestream Mach number and  is the angle of incidence of the flow 

upstream of the configuration. 

 

2.5.2. Boundary conditions 

The boundary conditions are basically of three types: solid wall, entrance and exit. Details of  

these implementations are available in [8] and [10]. 

 

2.6. Tool validation 

The validation of the tool followed a standard of analysis considering aeronautical cases. Data 

obtained from Maciel (2007) through the implementation of the schemes of Harten (1983), Frink, 

Parikh e Pirzadeh (1991), Liou e Steffen (1993), Radespiel e Kroll (1995), all first-order precision 

in space, were used for the comparison with the solutions obtained in the present work with the 
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scheme of Jameson and Mavriplis [1], for the pressure ratio on the wall of the ramp, in the case of 

Euler, through the DISSIPA2D_EULER code. The Euler equations in their conservative form, 

implemented through the use of a formulation of finite volumes (except the Jameson and Mavriplis 

[1] scheme) and structured spatial discretization in the two-dimensional space, were solved. The 

results obtained are shown in Fig. 1. In the specific case of the supersonic flow for the ramp 

configuration, the schemes present good behavior, with emphasis in the scheme of Harten (1983). 

 

 
Figure 1: The behavior of the scheme of Jameson and Mavriplis 

 

The behavior of the scheme of Jameson and Mavriplis [1] can be evidenced in Fig. 1. As can be 

observed, the pressure has a little oscillation in relation to the theoretical value, and, therefore, may 

indicate an error. However, the generated solution does not diverge from the theoretical value in 

order to compromise the quality of the method used, taking into account that a scheme with second-

order in space inadequately treats oscillations in regions with high pressure gradients. This will 

happen when it comes to second-order precision schemes. Then, based on the comparisons and 

considering the particularities of each scheme, the DISSIPA2D_EULER code showed good 

behavior. After this verification, it was possible to follow the simulations for the remaining cases. 
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3. RESULTS AND DISCUSSION 

 

In this study, the meshes generated algebraically to solve the Euler equations in shown in Fig. 2 

and Fig. 3. 

 

 
Figure 2: Mesh for the ramp configuration 

 

 
Figure 3: Mesh for the diffuser configuration 
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Tests were performed in an “INTEL CORE i5-4210U – 3.40GHz e and 8 Gbyte of RAM 

memory computer”. For the simulation, the Mach number adopted was 2.0 (which characterizes a 

supersonic flow). The value used for CFL number in this works was 0.1, the γ used was 1,67 (for 

the helium gas) and for the attack angle the value adopted was 0,0°. The isotropic scalar linear 

model of Pulliam [12], object of this study, yielded converged results, with residue of the order of 

10-7. 

 

3.1. The ramp physical problem 

An algebraic mesh of 61x71 points was used to this problem. The Fig. 4 and 5 exhibit, 

respectively, pressure and Mach number contours generated by Jameson and Mavriplis scheme. For 

the purpose of show the behavior of the contours of pressure and Mach number were realized 

simulations with different values of . The variation of the parameter  reflected directly in the 

final number of iterations, as can be seen in the Tab. 1. As  was increased, decreased the number 

of iterations, which was expected, because the increase of  implies more linear dissipation added 

to the system. Although not existing a standard value for , care must be taken in its growth, 

because determined  values can directly affect the solution of the problem, in other words, exists a 

compromise between the solution and the value of . 

 

 
Figure 4: Pressure contours for the ramp configuration 
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Figure 5: Mach number contours for the ramp configuration 

 

It is possible to note loss of homogeneity in the ramp contours. Pre-shock oscillations are 

perceived. It should be noted that such behavior is typical of second-order algorithms and thus does 

not represent an error of implementation in the algorithm, which does not affect capture of the 

shock. Figures 4 and 5 show the pressure and Mach number contours for  = 45. 

 

Table 1:  versus Iterations. 

CFL  Iterations 

0,1 5 - 

- 15 2446 

- 25 2306 

- 35 2243 

- 45 2160 

- 55 2111 

- 65 2068 

- 75 2011 

- 85 1984 

- 95 1955 
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3.2. The diffuser physical problem 

An algebraic mesh of 61x71 points was used to this problem. After the simulations with the 

ramp mesh type, simulations were performed involving diffusor configuration. The Fig. 6 and 7 

exhibits, respectively, pressure and Mach number contours generated for  = 185.  

 

 
Figure 6: Pressure contours for the diffuser configuration 

 

Figure 7: Mach number contours for the diffuser configuration 
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The contour view in the Fig. 7 shows the good properties of symmetry obtained with the linear 

model of Pulliam [12], as well as it is possible to notice a smaller loss of homogeneity when 

compared to the ramp case. The pressure and Mach number contours present good symmetry and 

the shock interference between the upper wall shock and the lower wall shock is well highlighted, 

important fact for the design of specific geometries and materials for a given component, which is 

typical during the development of components in nuclear power plants, for example. Other 

simulations can be realized, aiming better analysis of the contours.  

 

4. CONCLUSIONS 
 

The present work exhibits the DISSIPA2D_EULER code, generated through of numerical 

implementation of the Jameson e Mavriplis algorithm and the linear and nonlinear dissipation 

models of Pulliam applied to solve the Euler equations in two-dimensions. The physical problems 

of the supersonic flow along a ramp and diffuser were studied. The spatially variable time step was 

implemented to accelerate the convergence process. The results have demonstrated that the scalar 

linear model of Pulliam presents accurate solutions, and that Jameson and Mavriplis scheme may 

present more critical solutions, in relation to the other proposed schemes, however, without 

compromising the convergence of the scheme. In the both problems (ramp and diffuser), the 

isotropic scalar linear model yielded converged results. The quality of the solution related to the 

linear model of Pulliam, in this case, is related to parameter .  

As conclusion, the Jameson and Mavriplis algorithm can assume critical values, but which are 

relatively acceptable, taking into account, that the discretization of the governing equations with 

central formulas is not dissipative: such formulas can lead to spurious oscillations in problems in 

which convection is dominant. It is also possible to verify that, with the appropriated estimate for   

parameter, other values of  can be performed to find a better balance between  and the quality 

of the solution generated. In this study it is important to highlight that computational numerical 

techniques are widely used in aeronautical and aerospace problems, can be adapted, with the proper 

implementation, for the study of the flow of refrigerant flow in the core of gas cooled reactors. 
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More studies, with other example-cases, will be performed by this author aiming to better detect the 

characteristics of the algorithms presented in this work. 
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