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ABSTRACT 

 
A new approach for the application of the coarse–mesh Modified Spectral Deterministic method to numerically 

solve the two–dimensional neutron transport equation in the discrete ordinates (𝑺𝑵) formulation is presented 

in this work. The method is based on within node general solution of the conventional one–dimensional 

𝑺𝑵 transverse integrated equations considering constant approximations for the transverse leakage terms and 

obtaining the 𝑺𝑵 spatial balance equations. The discretized equations are solved by using a modified Source 

Iteration scheme without additional approximations since the average angular fluxes are computed analytically 

in each iteration. The numerical algorithm of the method presented here is algebraically simpler than other 

spectral nodal methods in the literature for the type of problems we have considered. Numerical results to two 

typical model problems are presented to test the accuracy of the offered method. 

 
Keywords: deterministic method, discrete ordinates formulation, fixed–source, spectral analysis. 
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 INTRODUCTION 

 

Over the past 30 years, several spectral nodal methods have been developed for numerically 

solving the time–independent, slab–geometry Boltzmann transport equation in the discrete ordinates 

(𝑆𝑁) formulation with no spatial truncation error. Among these methods, one can point out the 

spectral Green's function (SGF) [1; 2], the spectral Response Matrix (RM) [3] and the Analytical 

Discrete Ordinates (ADO) [4] analytical numerical methods, which generate numerical values for the 

node–edge angular fluxes that exactly agree with the analytical solution of the 𝑆𝑁 transport equations. 

These methodologies have been applied to develop coarse–mesh nodal methods for two–dimensional 

𝑆𝑁  problems. These methods are based on the nodal general solution of the one–dimensional 𝑆𝑁 

transverse integrated equations with approximations for the transverse leakage terms [5–8].  

In the work by Oliva et al. [9], a novel numerical methodology, framed in the class of the spectral–

nodal methods for solving multigroup slab–geometry 𝑆𝑁 transport equations in non–multiplying 

media, was presented. This method shows to be algebraically and computationally simpler than other 

spectral–nodal methods and was termed the Spectral Deterministic Method (SDM).      

In this work, we present the application of the modified SDM to 𝑋, 𝑌–geometry 𝑆𝑁  problems. 

Analogously to the companion methods [5–8], the present method is based on transverse integration 

of the two–dimensional 𝑆𝑁 equations and the transverse leakage terms are assumed to be constant 

along the edges of the spatial discretization nodes. This new method is referred to as the Modified 

Spectral Deterministic–Constant Nodal (MSD–CN) method and it uses an iterative algorithm 

essentially different from the sweeping schemes used in the recent spectral–nodal methods. 

This work is structured as follows: in Section 2, the spectral analysis for the 𝑆𝑁 transverse 

integrated equations with constant transverse leakage terms is presented and the iterative 

methodology used for the MSD–CN method is described. Numerical results for two test problems 

are given in Section 3; and a brief discussion of the results and suggestions for future work are offered 

in Section 4.  
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 MATERIALS AND METHODS 

 

The time–independent one–speed 𝑆𝑁 neutron transport equations considering isotropic 

scattering and non–multiplying media in a rectangular domain 𝐷 are  

𝜇𝑚

𝜕

𝜕𝑥
 𝜓𝑚(𝑥, 𝑦) + 𝜂𝑚

𝜕

𝜕𝑦
 𝜓𝑚(𝑥, 𝑦) + 𝜎𝑇(𝑥, 𝑦)  𝜓𝑚(𝑥, 𝑦) =

𝜎𝑆(𝑥, 𝑦)

4
∑ 𝜓𝑛(𝑥, 𝑦) 𝜔𝑛

𝑀

𝑛=1

+ 𝑄(𝑥, 𝑦), 

𝑚 = 1: 𝑀, (𝑥, 𝑦) ∈ 𝐷, (1) 

with prescribed or reflective boundary conditions. The notation in Equation (1) is standard for this 

type of problems [10; 11] with 𝑀 =  𝑁(𝑁 + 2)/2, where 𝑁 is the order of the angular quadrature 

set. The ordered pair (𝜇𝑚, 𝜂𝑚) represents the discrete directions of motion, 𝜔𝑛 are the correspond-

ing weights and we have defined 𝜓𝑚(𝑥, 𝑦) as the angular flux in direction (𝜇𝑚, 𝜂𝑚).  

Now, we consider an arbitrary spatial grid on 𝐷, viz Figure 1. The grid is composed of 𝐼 × 𝐽 

spatial nodes 𝑑𝑖,𝑗 ∈ 𝐷 with width ℎ𝑥𝑖 and height ℎ𝑦𝑗, constant total (𝜎𝑇 𝑖,𝑗) and scattering (𝜎𝑆 𝑖,𝑗) 

macroscopic cross sections, and constant interior source 𝑄𝑖,𝑗.  

 

Figure 1: Rectangular spatial grid on the domain 𝐷. 

 

Source: Author 
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The transverse–integration operator, is defined as 𝐿𝑢  ≡  
1

ℎ𝑢𝑠
 ∫ (⋅)𝑑𝑢

𝑢𝑠+1/2

𝑢𝑠−1/2
, where 𝑢 =  𝑥 (or 𝑦) 

and 𝑠 =  𝑖 (or 𝑗). At first, Equation (1) is integrated in the 𝑦 direction (𝑢 =  𝑦, 𝑠 =  𝑗) to obtain the 

one–dimensional transverse–integrated 𝑆𝑁 nodal equations in the 𝑥 direction 

𝜇𝑚

𝑑

𝑑𝑥
�̃�𝑚,𝑗(𝑥) +

𝜂𝑚

ℎ𝑦𝑗
[𝜓𝑚(𝑥, 𝑦𝑗+1/2) − 𝜓𝑚(𝑥, 𝑦𝑗−1/2)] + 𝜎𝑇 𝑖,𝑗 �̃�𝑚,𝑗(𝑥) 

 

=
𝜎𝑆 𝑖,𝑗

4
∑ �̃�𝑛,𝑗(𝑥) 𝜔𝑛

𝑀

𝑛=1

+ 𝑄𝑖,𝑗  , 𝑚 = 1: 𝑀, 𝑖 = 1: 𝐼, 𝑗 = 1: 𝐽, (𝑥, 𝑦) ∈ 𝑑𝑖,𝑗  . (2) 

 

Similarly, integrating Equation (1) in the 𝑥 direction (𝑢 =  𝑥, 𝑠 = 𝑖), the one–dimensional 

transverse–integrated 𝑆𝑁 nodal equations in the 𝑦 direction is obtained 

𝜇𝑚

ℎ𝑥𝑖
[𝜓𝑚(𝑥𝑖+1/2, 𝑦) − 𝜓𝑚(𝑥𝑖−1/2, 𝑦)]  +  𝜂𝑚

𝑑

𝑑𝑦
�̂�𝑚,𝑖

(𝑦) + 𝜎𝑇 𝑖,𝑗 �̂�𝑚,𝑖
(𝑦) 

 

=
𝜎𝑆 𝑖,𝑗

4
∑ �̂�𝑛,𝑖

(𝑦) 𝜔𝑛

𝑀

𝑛=1

+ 𝑄𝑖,𝑗  , 𝑚 = 1: 𝑀, 𝑖 = 1: 𝐼, 𝑗 = 1: 𝐽, (𝑥, 𝑦) ∈ 𝑑𝑖,𝑗 . (3) 

 

In Equations (2) and (3), the quantities �̃�𝑚,𝑗(𝑥) and �̂�𝑚,𝑖
(𝑦) are defined as the average angular 

flux over each spatial coordinate direction inside node 𝑑𝑖,𝑗 

�̃�𝑚,𝑗(𝑥) ≡  
1

ℎ𝑦𝑗
∫ 𝜓𝑚(𝑥, 𝑦)

𝑦𝑗+1/2

𝑦𝑗−1/2

 𝑑𝑦  and �̂�𝑚,𝑖
(𝑦) ≡  

1

ℎ𝑥𝑖
∫ 𝜓𝑚(𝑥, 𝑦) 𝑑𝑥

𝑥𝑖+1/2

𝑥𝑖−1/2

 . 

Moreover, Equations (2) and (3) represent two systems of 𝑀 ordinary differential equations in the 𝑥 

and 𝑦 coordinate directions, respectively. Each system has 3𝑀 unknowns, 𝑀 unknowns represented 

by �̃�𝑚,𝑗(𝑥) (or �̂�𝑚,𝑖(𝑦)) and 2𝑀 unknowns represented by the fluxes in the transverse leakage terms 

(𝜓𝑚(𝑥, 𝑦𝑗±1/2) or 𝜓𝑚(𝑥𝑖±1/2, 𝑦)). Therefore, we need to introduce approximations to guarantee 

uniqueness of the solution. In this work, the transverse leakage terms are considered constant along 

the edges in each node 𝑑𝑖,𝑗, which is the only approximation performed in the present method. The 

constants to approximate these terms are chosen so as to preserve the node–edge average fluxes in 

𝑑𝑖,𝑗. Thus, transverse–integrated 𝑆𝑁 constant nodal equations appear as 
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𝜇𝑚

𝑑

𝑑𝑥
�̃�𝑚,𝑗(𝑥) +

𝜂𝑚

ℎ𝑦𝑗
[�̂�𝑚,𝑖,𝑗+1/2 − �̂�𝑚,𝑖,𝑗−1/2] + 𝜎𝑇 𝑖,𝑗 �̃�𝑚,𝑗(𝑥) 

 

=
𝜎𝑆 𝑖,𝑗

4
∑ �̃�𝑛,𝑗(𝑥) 𝜔𝑛

𝑀

𝑛=1

+ 𝑄𝑖,𝑗   , 𝑚 = 1: 𝑀, 𝑖 = 1: 𝐼, 𝑗 = 1: 𝐽, (𝑥, 𝑦) ∈ 𝑑𝑖,𝑗  (4) 

and 

𝜇𝑚

ℎ𝑥𝑖
[�̃�𝑚,𝑖+1/2,𝑗 − �̃�𝑚,𝑖−1/2,𝑗]  +  𝜂𝑚

𝑑

𝑑𝑦
�̂�𝑚,𝑖

(𝑦)  +  𝜎𝑇 𝑖,𝑗 �̂�𝑚,𝑖
(𝑦) 

 

=
𝜎𝑆 𝑖,𝑗

4
∑ �̂�𝑛,𝑖

(𝑦) 𝜔𝑛

𝑀

𝑛=1

+ 𝑄𝑖,𝑗  , 𝑚 = 1: 𝑀, 𝑖 = 1: 𝐼, 𝑗 = 1: 𝐽, (𝑥, 𝑦) ∈ 𝑑𝑖,𝑗 , (5) 

 

where the local general solution of the two systems of 𝑀 ordinary differential equations represented 

in Equations (4) and (5) can be written as 

�̃�𝑚,𝑗(𝑥) = ∑ 𝛼𝑙
𝑥𝑎𝑚

𝑥 (𝜈𝑙
𝑥)𝑒−(𝑥−𝜆𝑖)/𝜈𝑙

𝑥

𝑀

𝑙=1

+ �̃�𝑚,𝑗
𝑃   , 𝑚 = 1: 𝑀  ,    𝑥 ∈ 𝑑𝑖,𝑗. (6) 

and 

�̂�𝑚,𝑖(𝑦) = ∑ 𝛼𝑙
𝑦

𝑎𝑚
𝑦

(𝜈𝑙
𝑦

)𝑒−(𝑦−𝜆𝑗)/𝜈𝑙
𝑦

𝑀

𝑙=1

+ �̂�𝑚,𝑖
𝑃   , 𝑚 = 1: 𝑀  ,    𝑥 ∈ 𝑑𝑖,𝑗. (7) 

The quantities �̃�𝑚,𝑗
𝑃  and �̂�𝑚,𝑖

𝑃  are the particular solutions. The first terms of the right–hand side 

represent the homogeneous component of the local general solutions. The quantities 𝜈𝑙 and 𝑎𝑚(𝜈𝑙) 

are obtained by solving an eigenvalue problem of order 𝑀. More details about this spectral analysis, 

the calculation of the particular solution and the definition of the parameter 𝜆 can be found in the 

work by Curbelo et al. [12]. 

The 𝛼𝑙
𝑥 and 𝛼𝑙

𝑦
parameters in Equations (6) and (7) are arbitrary constants to be determined 

according to the boundary conditions of the spatial discretization node. Differently from previous 

spectral nodal methods that one can find in the literature [5–8], the methodology as presented in this 

work uses the most recent estimates of the incoming angular fluxes in the node interfaces, to compute 

the values of 𝛼𝑙
𝑥 and 𝛼𝑙

𝑦
, and then, the outgoing fluxes of the analyzed node are calculated by using 

the conventional discretized spatial balance 𝑆𝑁 equations without introducing any additional 
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approximation. Due to the spectral analysis performed, the constant approximations for the transverse 

leakage terms and the modifications of the original iterative scheme, the present method is termed 

Modified Spectral Deterministic–Constant Nodal (MSD–CN) method. 

2.1. The MSD–CN method 

As a result of the spectral analysis [12; 7] we obtain the values of 𝜈𝑙 and 𝑎𝑚(𝜈𝑙) for each different 

material zone. Then, an estimate for the sets of 𝛼𝑙 parameters can be obtained by solving the linear 

system with estimates for the incoming node boundary conditions and the particular solutions at each 

spatial node 𝑑𝑖,𝑗. At this point, we use the source iteration (SI) scheme, which is a classical method 

for 𝑆𝑁 simulations [11]. In the next subsection, we describe the simple SI scheme as applied to the 

present MSD–CN method. We remark that apart from the constant leakage approximations, no 

additional approximations are included since we compute the average angular fluxes analytically in 

each iteration.     

At this point, we integrate Equation (1) within an arbitrary node 𝑑𝑖,𝑗 by using the operator  

 𝐿 ≡  
1

ℎ𝑥𝑖  ℎ𝑦𝑗
 ∫ ∫ (⋅)

𝑦𝑗+1/2

𝑦𝑗−1/2

𝑥𝑖+1/2

𝑥𝑖−1/2

𝑑𝑦 𝑑𝑥 

to obtain the discretized spatial balance 𝑆𝑁 equations 

𝜇𝑚

ℎ𝑥𝑖
[�̃�𝑚,𝑖+1/2,𝑗 − �̃�𝑚,𝑖−1/2,𝑗] +

𝜂𝑚

ℎ𝑦𝑗
[�̂�𝑚,𝑖,𝑗+1/2 − �̂�𝑚,𝑖,𝑗−1/2] + 𝜎𝑇 𝑖,𝑗 �̅�𝑚,𝑖,𝑗  

=
𝜎𝑆 𝑖,𝑗

4
∑ �̅�𝑛,𝑖,𝑗 𝜔𝑛

𝑀

𝑛=1

+ 𝑄𝑖,𝑗   , 𝑚 = 1: 𝑀, 𝑖 = 1: 𝐼, 𝑗 = 1: 𝐽  ,  (8) 

where we have defined the node–average angular flux in node 𝑑𝑖,𝑗 

�̅�𝑚,𝑖,𝑗 ≡  
1

ℎ𝑥𝑖 ℎ𝑦𝑗
∫ ∫ 𝜓𝑚(𝑥, 𝑦)

𝑦𝑗+1/2

𝑦𝑗−1/2

𝑥𝑖+1/2

𝑥𝑖−1/2

𝑑𝑦 𝑑𝑥 . (9) 

Now, we substitute the expression for �̃�𝑚,𝑗(𝑥) given in Equation (6) into Equation (9) and we obtain 

the analytical expression  

�̅�𝑚,𝑖,𝑗
𝑥 ≡  

1

ℎ𝑥𝑖 
 ∑ −𝛼𝑙

𝑥 𝜈𝑙
𝑥 𝑎𝑚

𝑥 (𝜈𝑙
𝑥) [𝑒−(𝑥𝑖+1/2−𝜆𝑖)/𝜈𝑙

𝑥
 − 𝑒−(𝑥𝑖−1/2−𝜆𝑖)/𝜈𝑙

𝑥
]

𝑀

𝑙=1

+ �̃�𝑚,𝑗  
𝑃 .  (10) 

Analogously, for the 𝑦 coordinate direction we obtain 
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�̅�𝑚,𝑖,𝑗
𝑦

≡  
1

ℎ𝑦𝑗  
 ∑ −𝛼𝑙

𝑦
 𝜈𝑙

𝑦
 𝑎𝑚

𝑦
(𝜈𝑙

𝑦
) [𝑒−(𝑦𝑗+1/2−𝜆𝑗)/𝜈𝑙

𝑦

 −  𝑒−(𝑦𝑗−1/2−𝜆𝑖)/𝜈𝑙
𝑦

]

𝑀

𝑙=1

+ �̂�𝑚,𝑖

𝑃
  .  (11) 

 

After some manipulation in the discretized spatial balance 𝑆𝑁 equations (8), we obtain the 

sweeping equations  

�̃�𝑚,𝑖±1/2,𝑗 =
ℎ𝑥𝑖

|𝜇𝑚|
[
𝜎𝑆 𝑖,𝑗

4
∑ �̅�𝑛,𝑖,𝑗

𝑥  𝜔𝑛

𝑀

𝑛=1

− 𝜎𝑇 𝑖,𝑗 �̅�𝑚,𝑖,𝑗
𝑥 + 𝑄𝑖,𝑗 −

𝜂𝑚

ℎ𝑦𝑗
(�̂�𝑚,𝑖,𝑗+1/2 − �̂�𝑚,𝑖,𝑗−1/2)] 

(12) + �̃�𝑚,𝑖∓1/2,𝑗 , 𝑚 = 1: 𝑀, 𝑖 = 1: 𝐼, 𝑗 = 1: 𝐽 

and 

�̂�𝑚,𝑖,𝑗±1/2 =
ℎ𝑦𝑗

|𝜂𝑚|
[
𝜎𝑆 𝑖,𝑗

4
∑ �̅�𝑛,𝑖,𝑗

𝑦
 𝜔𝑛

𝑀

𝑛=1

− 𝜎𝑇 𝑖,𝑗 �̅�𝑚,𝑖,𝑗
𝑦

+ 𝑄𝑖,𝑗 −
𝜇𝑚

ℎ𝑥𝑖
(�̃�𝑚,𝑖+1/2,𝑗 − �̃�𝑚,𝑖−1/2,𝑗)] 

(13) + �̂�𝑚,𝑖,𝑗∓1/2 , 𝑚 = 1: 𝑀, 𝑖 = 1: 𝐼, 𝑗 = 1: 𝐽. 

 

Analogously to the Modified Spectral Deterministic method for one–dimensional problems [13], 

the iterative algorithm for two–dimensional problems is essentially different from the transport 

sweeps used by the conventional methods, e.g, Diamond Difference [10], spectral Green's function–

Constant Nodal [1; 2], and spectral Response Matrix–Constant Nodal [5]. To illustrate the sweeping 

scheme for the 𝑋, 𝑌–geometry domain in the MSD–CN+SI scheme, let us consider Figure 2 

representing an arbitrary node 𝑑𝑖,𝑗 with quantities involved for the southwest to northeast sweep.  

Each arrow in Figure 2 represents 𝑁(𝑁 +  2)/8 directions in each quadrant.  

The 𝛼𝑙
𝑥 and 𝛼𝑙

𝑦
 parameters (represented by a black circle) are obtained at each node by using 

Equations (6) and (7) considering the node boundary conditions on the left–right and the lower–upper 

boundaries, respectively (solid arrows). Then, two estimates for the node–average angular fluxes are 

determined analytically (black triangle) by using Equations (10) and (11). At this point, the most 

recent estimates of the quantities �̅�𝑚,𝑖,𝑗
𝑥  and �̅�𝑚,𝑖,𝑗

𝑦
are substituted in the sweeping equations (12) and 

(13), in order to compute these outgoing node–edge average angular fluxes in the sweeping directions 

(dashed arrows). To proceed, the continuity conditions are applied to use the outgoing angular fluxes 

as estimates for the incoming angular fluxes of the adjacent nodes and the entire spatial grid is swept 
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in the four sweeping directions, characterizing one iteration. At the end of each iteration, it is checked 

whether the stopping criterion is satisfied. 

 

Figure 2: MSD–CN+SI algorithm for the SW–NE sweep. 

 

𝛼𝑙
𝑥 and 𝛼𝑙

𝑦
 parameters 

 

Node–average angular fluxes 

Source: Author 

 

In the next section, numerical results for two classical model problems are considered. The MSD–

CN+SI method was implemented in C++ (Code::Blocks 17.12 IDE) and the results are compared to 

the conventional fine–mesh Diamond Difference (DD) [10] and coarse–mesh methods. 

 

 RESULTS AND DISCUSSION 

 

In this section, we consider two classical model problems. The first model problem represents an 

oil well–logging problem for geophysics applications, and the second problem is a shielding 

calculation. In this work, the stopping criterion establishes that the relative deviations between two 

consecutive estimates for the average scalar flux on the node–edges of 𝑑𝑖,𝑗 (𝑖 = 1: 𝐼, 𝑗 = 𝐽) do not exceed the 

value 10−6. We remark that, in the 𝑆𝑁 formulation, we calculate the node–average scalar flux and the 

absorption rate density in 𝑑𝑖,𝑗 as 
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�̅� 𝑖,𝑗  =
1

4
  ∑ �̅�𝑛, 𝑖,𝑗  𝜔𝑛

𝑀

𝑛=1

      and      𝑅𝑖,𝑗  = ℎ𝑥𝑖  ℎ𝑦𝑗  𝜎𝐴 𝑖,𝑗  �̅� 𝑖,𝑗 , (14) 

respectively. 

3.1. Model Problem No 1. 

This model problem has been considered in references [14; 15]. The geometry and boundary 

conditions for this test problem are shown in Figure 3. The numerical experiment consists in 

calculating the average scalar flux in regions 𝐷1 and 𝐷2, that represent the locations of the detectors 

traditionally used in this configuration, due to an isotropic unit source located in region 𝑄1. The 

nuclear data are as follow: 𝜎𝑇(𝜎𝑆) for limestone = 0.330263 (0.314419); for water = 0.694676 

(0.634883); and for steel = 0.499122 (0.494460) 𝑐𝑚−1. 

 

Figure 3: Geometry and source (𝑐𝑚−3𝑠−1) for Model Problem No 1. 

 

Source: Adapted from reference [15] 

 

In Table 1, we list the numerical results generated for the average scalar fluxes in regions 𝐷1 and 

𝐷2, as computed by using the MSD–CN+SI method with the level symmetric 𝑆6 angular quadrature 

set [10] (24 ordinates directions) on two spatial grids composed of 56 × 64 and 112 × 128 
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discretization nodes. We also show the percentage relative deviations with respect to the results 

reported by Domínguez et al. [15] obtained with the spectral Green's function–Linear Nodal method, 

which we consider as reference results. As we observe, the results are accurate and the percentage 

relative deviations for the average scalar fluxes are less than 1% in all cases. 

Table 1: Average scalar flux (𝑐𝑚−2𝑠−1) for Model Problem No 1 (MSD– CN + SI, 𝑆6 model). 

Spatial grid a  𝑫𝟏 𝑫𝟐 

56 × 64  1.70684E+00 (0.59) b  1.23734E–02 (0.77) 

112 × 128 1.71388E+00 (0.18) 1.24367E–02 (0.27) 

a Number of nodes in the 𝑥 direction × number of nodes in the 𝑦 direction. 

b Percentage relative deviation with respect to the reference results [15]. 

 

 

3.2. Model Problem No 2. 

Now we estimate the response of two neutron detectors due to a uniform isotropic neutron source 

(𝑄1 = 1.0 𝑐𝑚−3𝑠−1) surrounded by a shielding material (𝑄2 = 0.0). Figure 3 represents one–fourth 

of the whole shielding structure  

 

Figure 4: Geometry, nuclear data (𝑐𝑚−1) and sources (𝑐𝑚−3𝑠−1) for Model Problem No 2. 

 

Source: Adapted from reference [15] 
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To model this problem, we used the 𝑆16 angular quadrature set (144 ordinates directions) on two 

distinct spatial grids. The results obtained with the offered MSD–CN+SI code are compared with the 

results generated by the conventional fine–mesh DD and the coarse–mesh RM–CN methods, by 

using the source iteration (SI) and the partial one–node block inversion (NBI) iterative schemes, 

respectively. As a reference, we use the results generated by the DD+SI method on a uniform spatial 

grid composed of 100 × 100 discretization nodes, since this is the finer mesh used in the references 

[12; 15]. The third and fourth columns in Table 2 display the absorption rate densities and the 

percentage relative deviations with respect to the reference results for detectors 𝐷1 and 𝐷2, 

respectively. 

The results obtained by using the present MSD–CN+SI method do agree, in all cases, with those 

obtained by using the RM–CN+NBI method, at least, up to the fifth decimal place. We observe, as 

expected, that the DD+SI method is more sensitive to the discretization grids, with the results varying 

considerably for the detector located farther away from the source. As we may see, for the spectral 

nodal methods, the percentage relative deviations are less than 1% for a grid composed of 20 × 20. 

 

Table 2: Absorption rate density (𝑐𝑚−1𝑠−1) for Model Problem No 1 (𝑆16 model). 

Method+Iterative Scheme Spatial grid a  𝑫𝟏 𝑫𝟐 

DD+SI 

100 × 100  3.96064E–01b  6.86388E–02 b 

10 × 10 5.15839E–01 (29.7) c 1.01614E–01 (48.0) 

20 × 20 3.95725E–01 (0.09) 7.21137E–02 (5.06) 

RM–CN+NBI 
10 × 10 3.95611E–01 (0.11) 6.19987E–02 (9.67) 

20 × 20 3.95647E–01 (0.11) 6.83082E–02 (0.48) 

MSD–CN+SI  
10 × 10 3.95611E–01 (0.11) 6.19987E–02 (9.67) 

20 × 20 3.95647E–01 (0.11) 6.83082E–02 (0.48) 

a Number of nodes in the 𝑥 direction × number of nodes in the 𝑦 direction. 

b Reference results. 

c Percentage relative deviation with respect to the reference results. 
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Despite of accurate results for both model problems, the present approach must be further 

studied thoroughly. Analyses on the convergence, computing time and the memory storage 

requirements need to be performed. Also, a comprehensive comparison with conventional spectral 

nodal methods is necessary. This shall require that all the algorithms be implemented on the same 

code using similar programming techniques. 

 CONCLUSION 

 

In this work, a new coarse–mesh numerical method for fixed–source 𝑆𝑁 problems in two–

dimensional geometry has been presented. The offered methodology involved a conventional spectral 

analysis with a new ingredient, since the analytical solutions for the node–average angular fluxes are 

used to architect a modified Source Iteration scheme without additional approximations, apart from 

the constant approximations for the transverse leakage terms. We have presented a detailed 

description of the methodology and the numerical results have been compared to conventional fine 

and coarse–mesh methods.  

One important feature of this class of numerical methods is the scalability to more realistic 

problems. In future work, it is intended the application of this methodology to energy multigroup 

problems considering anisotropic scattering. The application of the Modified Spectral Deterministic–

Constant Nodal (MSD–CN) method to global calculations of nuclear reactors in slab–geometry and 

two–dimensional problems shall be also developed.  
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