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ABSTRACT 

 
In this work, we solve numerically the one-dimensional transport equation with semi-reflective boundary 

conditions and non-homogeneous domain. The proposed methodology consists of applying the Nyström method 

in order to discretize the integral formulation of this problem which is an equation involving weakly singular 

integral operators. For this purpose, analytical and computational techniques were applied to deal with the 

singularities. The Nyström method is an integral method that approximates the integral operator by a numerical 

quadrature and turns the integral equation into a finite dimensional linear system. This formulation allows us to 

use any function to describe both scattering cross section and total cross section. The algorithm is implemented 

in C language with the use of routines of GNU scientific library and computational techniques for code 

optimization. The scalar flux was calculated for two numerical quadrature, namely Gauss-Legendre quadrature 

and Boole's rule. The numerical results were determined for the transport problem with homogeneous and non-

homogeneous domains. In order to validate the proposed methodology, our numerical results were compared 

with those from the literature and presented with several correct significant digits.  

Keywords: transport equation, integral formulation,  Nyström method. 
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1. INTRODUCTION 

 

The transport equation has been the focus of many groups of researchers in recent years [1, 2, 

3]. One of the interests in this equation is to obtain a numerical solution for problems with different 

geometries and boundary conditions. Among the studied methodologies, we cite two large families: 

Discrete Ordinates [4] and Integral Methods [5]. The first family consist of discretizing the angular 

variable of the integro-differential transport equation producing a system of ordinary differential 

equations and, the second, consist of writing the equivalent integral equation where the angular 

variable does not appear explicitly, truncating the involved integral operators in matrices and 

producing a linear system.  

Integral Methods, such as the Nyström method applied in this work, are known to produce 

accurate results for the transport equation in various geometries, since that the discretization is 

careful enough to remove the singularities from the kernel. Moreover, these methods work very 

well when the transport equation must be solved thousands of times with the same set of parameters 

and different sources.  This happens in evolutionary problems, where the phenomenon of heat 

transfer involves diffusion, convection and radiation. In these cases, the transport equation is solved 

in the pre-processing and, at each step of time, for a new source, the scalar flux is obtained by a 

matrix multiplication [6]. Thus, although the Nyström method has a computational cost comparable 

to the methods in discrete ordinates to construct the matrices and solve the problem, there are those 

situations where it can really have a significant advantage in the simulation time without losing 

accuracy. 

In this work, we apply the Nyström method to solve the one-dimensional transport equation in 

the steady-state, one-speed and non-homogeneous domain. Recently, Dalmolin et al. [7] simulated 

the transport problem with slab geometry and, Azevedo et al. [8] and Sauter et. al. [9] solved the 

same problem in X-Y geometry, both works applying the Nyström method, but none of them 

considered the non-homogeneous case. In fact, when the nuclear parameters depend on the spatial 

variable, some new complications appear as in obtaining the integral formulation as in discretizing 

the problem. 
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The main idea in the Nyström method is to approach the integral operators in the equation 

applying a numerical quadrature and to solve a linear system for the scalar flux in the mesh points. 

However, the naive implementation of this methodology does not work because the kernel of the 

transport operator has a singularity. Here, we remove the singularity of the kernel and we make a 

careful implementation to produce a fast algorithm which calculates accurate results. 

In order to validate the methodology, we compare our numerical results with those found in the 

literature. Results for the homogeneous, multilayer and non-homogeneous domains are compared 

with those presented by Dalmolin et al. [7], Nunes and Barros [10] and Garcia and Siewert [11] 

respectively. In the simulations we consider two numerical quadrature, namely Gauss-Legendre 

quadrature and Boole's rule. Also, tabulated convergence studies show good accuracy for scalar flux 

results with several correct significant digits.  

The integro-differential formulation for the transport problem solved here is given by 

 

 

 

where Ψ(x, µ) is the angular flux, 0 < x < L is the spatial variable and µ is the cosine of the angle 

formed between the direction of propagation and the axis x. The functions σt(x) and σs(x) represent 

the total macroscopic cross section and scattering macroscopic cross section which are different 

from zero and  σt(x) > σs(x) . The function S(x) is the isotropic internal source. 

 The semi-reflective boundary conditions considered here are given by 

 

 
 

 

 
       

where 0 ≤ ρ0, ρL ≤ 1 are the reflection coefficients and B0(µ) and BL(µ) represent the contribution of 

the boundary. 

In view of the Nyström method is applied for the integral formulation of transport equation we 

first rewrite the problem as an integral equation and present calculus in Section 2. In Section 3 we 
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present the discretization as well as the techniques to remove the singularities and implementation 

details. The numerical experiments are discussed in Section 4. We write the conclusion in Section 5. 

 

2. INTEGRAL FORMULATION 

 

In order to determine the integral form of the transport equation in non-homogeneous domain 

we rewrite the equation (1) as  

 

 
 

where Q(x) = σs(x)Φ(x) + S(x)  and the scalar flux is defined by 

 

 
 

Then, we apply the integrating factor method in the differential equation (4) and we get 

 

 
 

 We solve the equation (6) in two different ways, first integrating on (0, x) and after on (x, L)  

and we obtain, respectively, 

 

 
 

 
 

 Here, both solutions are valid for µ > 0  and µ < 0  so we consider the expression (7) to the 

angular flux if  µ > 0  and the equation (8) if  µ < 0 . We observe that the angular flux Ψ(x, µ) in 
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equations (7) and  (8) are not solved yet because Ψ(0, µ) and Ψ(L, µ) are not provided in all 

direction µ (see equations (2) and (3)).  

In order to calculate the unknown fluxes at the boundary we consider x = L in the equation (7),  

 x = 0  in the equation (8) and applying the boundary conditions (2) and (3) we have 

 

   

 

 

 

 
 

By equations (9) and (10) we obtain the linear system  to the angular fluxes which are given by        
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Replacing the equation (11) in (7) we obtain 

 

 
 

and the equation (12) in (8), after changing µ for -µ  in (8),  we have 

 

 
 

 Now, we calculate the scalar flux Φ(x) integrating both expressions (13) and (14), the first on 

[0,1) and, the second on (-1,0]. So we obtain,    
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The scalar flux in equation (15) combining with expressions (13) and (14) can be written in 

terms of two integral operator as follow,   

 

 

 

where the operator Lg is given by 

 

 
 

with kernel k(x, τ) expressed by 

 

 
 

The function LbB(x) is such that 
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Replacing Q(x)=σs(x)Φ(x)+S(x) in the equation  (16) we get the integral formulation to the one-

dimensional transport equation with non-homogeneous domain 

 

 
 

where g(x) = LgS(x) + LbB(x). 

 

3. DISCRETIZATION 

 

The function k(x, τ) in the equation (20) has a singularity when τ = x. We apply the singularity 

subtraction technique in the kernel, i.e., k(x, τ)Φ(τ)σs(τ) = k(x, τ)[Φ(τ)σs(τ) – Φ(x)σs(x)] + k(x, τ) 

Φ(x)σs(x)  and we obtain the follow expression for the scalar flux: 

 

 
 

where  
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We observe that the removal of singularity in equation (21) is essential for the stability of 

discretization. The Nyström method consists of approaching the integral term using a numerical 

quadrature, i.e., 

 

 
 

So, the scalar fluxes on the mesh points are approached by, 

 

 
 

where Φ(xi) = Φi, σs(xi) = σsi, k(xi, τj) = kij, R(xi) = Ri, g(xi) = gi, w(τj) = wj are the quadrature 

weights and xi the nodes. 

 The code is implemented in C programming language and simulated on an Intel Core i7 

computer. Observe that we have done an analytical treatment in the term Ri to produce accurate 

results. Also, we solve integral terms using the numerical integration of the GNU Scientific Library 

(GSL). The linear system obtained from equation (24) is solved by LU decomposition method using 

a routine from GSL as well. 

  

4. NUMERICAL RESULTS 

 

In this section, we present the numerical results for the transport problem in homogeneous, 

multilayer and non-homogeneous domains with semi-reflective boundaries, given by equations (1)-

(3), using the methodology from Section 3. We present the results for two numerical quadrature 

schemes namely, Gauss-Legendre quadrature and Boole’s rule. For each quadrature, we have done 

a convergence study in the mesh points, which allows us to compare the accuracy of the results, and 
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for some cases, we present the computational time.  We have chosen values of N between 1001 and 

16001 and the numerical experiments have presented some correct significant digits. 

In order to validate our results, we compare with the works of Nunes and Barros [10], Dalmolin 

et al. [7] and Garcia and Siewert [11]. Nunes and Barros presented the solution for the problems in 

homogeneous domain and multilayer slabs with three regions. These problems were solved with 

three numerical methods: Diamond Difference method (DD), Step method (S) and Step 

Characteristics method (SC). These methods were applied in the Discrete Ordinates Equation (SN) 

until order S8. Dalmolin et al. [7] solved the homogeneous problem by Nyström method and 

obtained an accurate results for the scalar flux. The article by Garcia and Siewert [11] present 

simulations of radiative transfer problem in non-homogeneou domain whose solution is determined 

by the FN  method.  

 

4.1. Homogeneous problem  

We start presenting results for the homogeneous problem introduced in [10] with the follow 

parameters:    L = 50cm,  ρ0(µ) = ρL(µ) = 0, B0(µ) = BL(µ) = 2, σt(x) = 1cm
-1

, σs(x) = 0.97 cm
-1

, and 

S(x) = 0. Results are presented in Tables 1 and 2. 

 

Table 1: Numerical results to Gauss-Legendre quadrature. 

x DD S SC  N=1001 N=2001 N=4001 N=8001 N=16001 

0.0 1.704731  1.703453  1.704683 1.704732 1.704732 1.704732 1.704732 1.704732 

25.0 0.001956  0.002012  0.001958 0.001955 0.001955 0.001955 0.001955 0.001955 

50.0 1.704731 1.703435 1.704683 1.704732  1.704732 1.704732 1.704732 1.704732 

 

Table 2: Numerical results to Boole’s rule. 

x DD S SC  N=1001 N=2001 N=4001 N=8001 N=16001 

0.0 1.704731  1.703453  1.704683 1.704897 1.704778 1.704745 1.704735 1.704733 

25.0 0.001956  0.002012  0.001958 0.001955 0.001955 0.001955 0.001955 0.001955 

50.0 1.704731 1.703435 1.704683 1.704897  1.704778 1.704745 1.704735 1.704733 
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In work [10]  the Diamond Difference method presented the better accuracy when was 

compared DD, S and SD. Then we compared our solution with that from DD method [10]. The 

numerical results in the Tables 1 and 2 show a good numerical performance for both quadratures. 

We calculated the scalar flux with five correct significant digits using Gauss-Legendre quadrature 

and with the same precision applying Boole's rule. For the Gauss-Legendre quadrature the 

computational time to calculate the angular flux in N=1001, N=2001, N=4001, N=8001 and 

N=16001 was 23 s, 1 m 32 s, 6 m 3 s, 24 m 54 s and 1 h 49 m 51 s, respectively, and for the Boole’s 

rule for the same values for N the computational time was 21 s, 1m 25 s, 5 m 29 s, 23 m 53 s and 1h 

45 m 5 s.  We observed that, even with similar computational time, the Gauss-Legendre quadrature 

presents five correct digits with only 1001 points in the mesh while the Boole rule needs 8001. 

The second and third problems simulated here were proposed by Dalmolin et al. [7].  In that 

work the Nyström method was applied for solving the transport equation in homogeneous domain 

and semi-reflective boundaries. The numerical results presented in [7] were obtained using Gauss-

Legendre quadrature and Boole's rule. 

In the second problem we consider length domain L = 1cm, the reflection coefficients ρ0(µ) = 

ρL(µ) = 1  and the boundary terms  B0(µ) = BL(µ) = 1/8 . The cross sections are given by  σt(x) = 

σs(x) = 1cm
-1

 and source term S(x) = 1/8. In the third test, we consider length domain L=1cm and 

vacuum boundary conditions. The cross sections are given by  σt(x) = σs(x) = 1cm
-1

  and source 

term S(x) = -x
2
+x. We simulated both problems using Gauss-Legendre quadrature and Boole's rule 

and the numerical results obtained here were the same presented by Dalmolin et al. [7]. These 

results were expected because the methodology applied by Dalmolin et al. [7] is the same used in 

this work, however it is restricted to homogeneous case.  

 

4.2. Multilayer slab problem  

The transport problem in multilayer slab was compared with the proposed by Nunes and Barros 

[10]. In that work, the numerical results were obtained by Diamond Difference method and were 

simulated for three regions. In this case we consider the problem with length domain  L = 40cm  

and boundary conditions Ψ(0, µ) = 1 and Ψ(L, µ) = 1. The functions σt(x), σs(x),  and S(x) for each 

region are presented in Table 3. 
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Table 3: Parameters of the non-homogeneous problem. 

Region 1 2 3 

S(x) 0 0 1 

σt(x) 1 1 1 

 σs(x) 0.97 0.95 0.99 

Thickness 15 15 10 

 

Table 4: Numerical results to Gauss-Legendre quadrature. 

x DD N=501 N=1001 N=2001 N=4001 N=8001 N=16001 

0.0 0.852638 0.852638 0.852638 0.852638 0.852638 0.852638 0.852638 

20.0 0.481766 0.482850 0.484256 0.482214 0.482542 0.482026 0.482108 

40.0 7.090416 7.093101 7.095029 7.091948 7.092451 7.091686 7.091813 

 

Table 5: Numerical results to Boole’s rule. 

x DD N=501 N=1001 N=2001 N=4001 N=8001 N=16001 

0.0 0.852638 0.852831 0.852693 0.852653 0.852642 0.852639 0.852638 

20.0 0.481766 0.476498 0.480935 0.481354 0.481662 0.481815 0.481892 

40.0 7.090416 7.073885 7.087380 7.089942 7.090936 7.091313 7.091469 

 

In the Tables 4 and 5 are tabulated the numerical results for the transport problem in multilayer 

slab. We observe that the solution presented in work [9] were simulated with angular discretization 

of order S8 which is low to obtain good accuracy. The numerical results of this work presented one 

or two digits while our methodology produced results with six significant digits. We approach the 

integral operators using Gauss-Legendre quadrature and Boole's rule and both quadratures had 

similar performance when the number of nodes is large. The computational time to determine the 

solution of the problem in multilayer slab at N = 501, N = 1001, N = 2001, N = 4001, N = 8001 and 

N = 1601 was 7 s, 25 s, 1 m 36 s, 6 m 22 s, 25 m 9 s and 1 h 55 m 34 s for the Gauss-Legendre 

quadrature and 7 s, 24 s, 1 m 30 s, 6 m 3 s, 25 m 54 s and 1h 51 m 58 s when we apply Boole's rule. 
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therefore, when we consider the same number of points in the mesh, the computational performance 

of the quadradures is similar. 

 

4.3. Non-homogenenous problem  

Finally, we validate our results comparing them with that obtained by Garcia and Siewert [11]. 

In this work the authors determined the exit distributions, Ψ(0,-µ) and Ψ(L,µ), of the radiative trans-

fer problem in non-homogeneous domain with an exponentially varying albedo by FN method. In 

order to compare our numerical results with the solution by Garcia and Siewert [11] we determinate 

the  exit distribution from the scalar flux as in the following equations,  

 

 

 

and 
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In the first problem simulated we consider L = 5cm,  ρ0(µ) = ρL(µ) = BL(µ) = 0, B0(µ) = 1, 

σt(x) = 1cm
-1

, σs(x) = e 
-x/s

 cm
-1

, and S(x) = 0.  The numerical results for the exit distribution are 

presenteds in the Tables 5 and 6.  

 

Table 5:  The exit distribution Ψ(0,-µ).  

 s=1
[10] 

s=1 s=10
[10]

 s=10 s=100
[10]

 s=100 

0.05 0.58966   0.58966   0.76081 0.76081 0.86400   0.86400   

0.1 0.53112   0.53112   0.73398 0.73398 0.85028   0.85028   

0.2 0.44328   0.44328   0.68632 0.68632 0.82523   0.82523   

0.3 0.38031   0.38031   0.64418 0.64418 0.80181   0.80181   

0.4 0.33296   0.33296   0.60647 0.60647 0.77946   0.77946   

0.5 0.29609   0.29609   0.57257 0.57257 0.75799   0.75799   

0.6 0.26656   0.26656   0.54197 0.54197 0.73730   0.73730   

0.7 0.24239   0.24239   0.51427 0.51427 0.71733   0.71733   

0.8 0.22223   0.22223   0.48910 0.48910 0.69805   0.69805   

0.9 0.20517   0.20517   0.46615 0.46615 0.67943   0.67943   

1.0 0.19055   0.19055   0.44517 0.44517 0.66146   0.66146   

 

Table 6:  The exit distribution Ψ(L,µ).  

 s=1
[10] 

s=1 s=10
[10]

 s=10 s=100
[10]

 s=100 

0.05 0.6075E-5   0.6075E-5   0.58031E-2 0.58031E-2 0.62883E-1   0.62883E-1   

0.1 0.69252E-5   0.69252E-5   0.63702E-2 0.63702E-2 0.69024E-1 0.69024E-1 

0.2 0.96423E-5   0.96423E-5   0.76183E-2 0.76183E-2 0.80567E-1 0.80567E-1 

0.3 0.16234E-4 0.16234E-4 0.91482E-2 0.91482E-2 0.91918E-1 0.91918E-1 

0.4 0.43858E-4   0.43858E-4   0.11119E-1 0.11119E-1 0.14012   0.14012   

0.5 0.16937E-3   0.16937E-3   0.13725E-1 0.13725E-1 0.11523   0.11523   

0.6 0.57347E-3   0.57347E-3   0.17183E-1 0.17183E-1 0.12744   0.12744   

0.7 0.15128E-2   0.15128E-2   0.21680E-1 0.21680E-1 0.14010   0.14010   

0.8 0.32437E-2   0.32437E-2   0.27331E-1 0.27331E-1 0.15319 0.15319 

0.9 0.59604E-2   0.59604E-2   0.34166E-1 0.34166E-1 0.16667     0.16667     
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1.0 0.97712E-2   0.97712E-2   0.42142E-1 0.42142E-1 0.18047 0.18047 

 

In the second problem we consider the follow parameters : L= 5m,  ρ0(µ) = ρL(µ) = BL(µ) = 0, 

B0(µ) = δ(µ-0.9), σt(x) = 1cm
-1

, σs(x) = e 
-x/s

 cm
-1

 and S(x) = 0. Results are presented in Tables 7 and 

8. 

Table 7: The exit distribution Ψ(0,-µ).  

 s=1
[10] 

s=1 s=10
[10]

 s=10 s=100
[10]

 s=100 

0.05 0.69801 0.69801 0.98398 0.98398 0.11842E-1 0.11842E-1 

0.1 0.65651 0.65651 0.99343 0.99343 0.12182E-1 0.12182E-1 

0.2 0.57637 0.57637 0.98472 0.98472 0.12531E-1 0.12531E-1 

0.3 0.50955 0.50955 0.95989 0.95989 0.12655E-1 0.12655E-1 

0.4 0.45523 0.45523 0.92849 0.92849 0.12655E-1 0.12655E-1 

0.5 0.41078 0.41078 0.89472 0.89472 0.12655E-1 0.12655E-1 

0.6 0.37396 0.37396 0.86064 0.86064 0.12655E-1 0.12655E-1 

0.7 0.34304 0.34304 0.86064 0.86064 0.12655E-1 0.12655E-1 

0.8 0.31676 0.31676 0.79531 0.79531 0.12089E-1 0.12089E-1 

0.9 0.29416 0.29416 0.76486 0.76486 0.11883E-1 0.11883E-1 

1.0 0.27454 0.27454 0.73605 0.73605 0.11665E-1 0.11665E-1 

 

Table 8: The exit distribution Ψ(L,µ).  

 s=1
[10] 

s=1 s=10
[10]

 s=10 s=100
[10]

 s=100 

0.05 0.18678E-4 0.18678E-4 0.13216E-1 0.13216E-1 0.13460 0.13460 

0.1 0.21226E-4 0.21226E-4 0.14498E-1 0.14498E-1 0.14772 0.14772 

0.2 0.29214E-4 0.29214E-4 0.17307E-1 0.17307E-1 0.17237 0.17237 

0.3 0.47082E-4 0.47082E-4 0.20723E-1 0.20723E-1 0.19656 0.19656 

0.4 0.10218E-3 0.10218E-3 0.25054E-1 0.25054E-1 0.22097 0.22097 

0.5 0.26855E-3 0.26855E-3 0.30578E-1 0.30578E-1 0.24579 0.24579 

0.6 0.65035E-3 0.65035E-3 0.37422E-1 0.37422E-1 0.27089 0.27089 

0.7 0.13276E-2 0.13276E-2 0.45484E-1 0.45484E-1 0.29586 0.29586 

0.8 0.23249E-2 0.23249E-2 0.54487E-1 0.54487E-1 0.32019 0.32019 
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0.9 0.36161E-2 0.36161E-2 0.64073E-1 0.64073E-1 0.34339 0.34339 

1.0 0.51444E-2 0.51444E-2 0.73894E-1 0.73894E-1 0.36507 0.36507 

 

In the Tables 5, 6, 7 and 8 we tabulate the results numerical for the exit distributions of the 

radiative transfer problem in non-homogeneous domain with an exponentially varying albedo. Our 

solution presented five digits of precision as well as in the paper of Garcia and Siewert [11]. In all 

simulations, the solution converged more quickly when we approach the integral operator using the 

Gauss-Legendre quadrature, in some cases it was up to sixteen times faster than the Boole’s rule. 

For the case where s = 100 in Table 5, we obtained five digits of precision at N = 401 points 

when applying the Gauss-Legendre quadrature and the same precision when considering N = 801 

points for Boole's rule. For the Gauss-Legendre quadrature, the computational time to determine the 

exit distribution for N = 101, N = 201, N = 401 and N = 801 was 27 s, 1 m 37 s, 6 m 23 s and 25 m 

41 s, respectively, when we apply the Boole’s rule we obtain the following computational times 27 

s, 1 m 41 s, 6 m 29 s and 25 m 44 s for the same number of points. Although the solution 

converging more quickly when we apply the Gauss-Legendre quadrature we have that the 

computational time is similar when we simulate both quadratures for the same number of points in 

the mesh. This same behavior is repeated in all other simulations. 

 

5. CONCLUSION 

 

In this work, we determined the numerical solution for the one-dimensional transport equation 

with non-homogeneous domain and semi-reflective boundaries by Nyström method. For being an 

integral method we worked with formulation integral of this problem associated with the 

application of techniques to remove the singularities of the kernel of the integral operator.  The 

removal of singularity was essential for the stability of discretization of the problem by Nyström 

method. 

In order to check the efficiency of the methodology proposed in this work we resolved problems 

in homogeneous, multilayer and non-homogeneous domains using Gauss-Legendre quadrature and 

Boole's rule. The numerical results produced in the simulations presented the same precision that 
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literature data and in some cases were more accurate like in the multilayer problem. Analyzing the 

performance of the quadratures,  we observe that both presented similar behavior when the number 

of nodes is large.  

Our code is numerically efficient because it produced accurate results with low computational 

cost. It is also robust because it solved problems in homogeneous and non-homogeneous domains, 

including multilayer and more general cases. 
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