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ABSTRACT 

 
The present study proposes a method for the execution of uncertainty and sensitivity analysis on TRANSURANUS 

code, adapted for the use of stainless steel AISI-348 as the cladding material for a PWR reactor fuel rod, thus 

allowing to determine which input data are more relevant to the TRANSURANUS models, as well as a confidence 

interval for the results. The analysis was made through Monte Carlo sampling, where input values related to the 

geometry and composition of the fuel rod were taken from a normal distribution truncated around fabrication 

tolerance values. The generated samples were used as TRANSURANUS input data, and after numerous executions 

of the code, the results pertaining to the fuel center line temperature, fuel rod inner pressure and cladding strains 

were used to obtain a confidence interval and to make a variance-based sensitivity analysis, showing that the 

models used in TRANSURANUS are additive in nature, and input interactions are not relevant to the code. 

 
Keywords: fuel performance code, sensitivity analysis, uncertainty analysis, confidence intervals. 
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1. INTRODUCTION 

 

The licensing process of nuclear reactors is subject to the presenting of calculations and 

experimental data showing that reactor operation under normal conditions occurs within safety 

bounds. Calculations such as these can only be performed numerically using fuel performance codes. 

When designing a simulation to be run in such codes, a virtual experiment can be conservative, 

choosing the “worst case” of each variable involved, or realistic, choosing design values for variables 

and most probable values for each parameter. For many years, conservative analysis was preferred, 

but the perfecting of fuel performance codes has made predictions of realistic models more and more 

reliable, opening a possibility for new and daring reactor designs. 

Of course, despite the increasing reliability of fuel performance codes, calculations remain subject 

to uncertainties: unknown values of code parameters, parameters subject to natural variation, 

uncertainties pertaining to numerical solutions, to the fabrication of fuel rod components and to the 

model itself. Therefore, in order to make a realistic analysis of a nuclear reactor it is necessary to 

establish a confidence interval for the results that takes into account the uncertainties present in the 

model [1]. 

Another useful tool for model analysis is sensitivity analysis, which attributes a relative 

importance to each of the uncertain model inputs. The present work describes a method for 

uncertainty analysis in fuel performance codes, as well as sensitivity analysis by variance 

decomposition [2]. Such analysis will be applied to the fabrication parameters of a stainless steel clad 

fuel rod from a hypothetical pressurized water reactor (PWR). At the conclusion of this study, it is 

expected that a confidence interval for outputs related to safety criteria – fuel center line temperature, 

fuel rod inner pressure and cladding creep strain – will be obtained, as well as an attribution of 

importance to each of the input factors. 

 

2. MATERIALS AND METHODS 

 

The fuel performance code chosen for this study was TRANSURANUS [3], a code developed by 

the Institute of Transuranium Elements in Europe, focused on the thermal and mechanical analysis of 

fuel rods in nuclear reactors. Following the Fukushima nuclear accident, a search began for improved, 
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accident resistant cladding materials [4]. The version of the TRANSURANUS code chosen for this 

analysis was the version developed by Giovedi et al (2019) which includes a library of thermal and 

mechanical properties of stainless steel AISI-348, chosen as the cladding material of the hypothetical 

fuel rod due to it’s structural advantages, such a greater resistance to corrosion when compared to 

other stainless steel claddings [5,6]. 

In order to perform a global uncertainty and sensitivity analysis, input values considered uncertain 

are chosen from a random distribution that represents the behavior of said variable, TRASURANUS 

is run with sampled values and relevant output is saved. This process is repeated for N values of each 

input parameter. In order to do that, TRANSURANUS is coupled with GNU Octave, a high level 

language focused on numerical solutions. GNU Octave scripts are used to generate N samples of each 

input parameter according to chosen distribution, automatize the generation of new 

TRANSURANUS input files, run TRANSURANUS and extract and save data from TRASURANUS 

output files, which is then analyzed [7,8,9]. 

 

Sensitivity analysis 

The method chosen for realization of sensitivity analysis was variance decomposition. By this 

method, a sensitivity index Si could be defined as: 

 

𝑆𝑖 =
𝑉[𝐸(𝑌 𝑋𝑖⁄ )]

𝑉(𝑌)
          (1) 

 

Where E(Y|Xi) is the expectation value of the result vector Y when the variable Xi is kept fixed.  

This should be calculated for each of the N values Xi can take. Considering a total of k uncertain 

inputs, the calculation of sensitivity indices using Equation (1) would require Nk operations, which 

can be extremely computationally costly. Thus, the method developed by Saltelli et al (2008) [2] is 

chosen. By this method, the number of operations can be reduced to N(k+2), a much more manageable 

quantity. 

In this method, two groups of samples, A and B, are generated in the form of matrices of N lines 

and k columns corresponding to the uncertain inputs. The model is applied to A and B, producing the 

result vectors yA and yB. Then matrices A and B are recombined into a matrix Ci where the i-th column 
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of B is substituted by the i-th column of A. The model is applied to Ci, generating a  yCi result vector. 

In possession of these quantities, sensitivity indices Si are given by: 

 

𝑆𝑖 =
𝑦𝐴⋅𝑦𝐶𝑖−𝑓0

2

𝑦𝐴⋅𝑦𝐴−𝑓0
2 =

(1 𝑁⁄ )∑𝑁j=1 𝑦𝐴
(𝑗)
𝑦𝐶𝑖
(𝑗)
−𝑓0

2

(1 𝑁⁄ )∑𝑁j=1 (𝑦𝑎
(𝑗)
)2−𝑓0

2
       (2) 

where 

 

𝑓0
2 = (

1

𝑁
∑𝑁

j=1 𝑦𝐴
(𝑗)
)2            

 

To account for input interactions, another quantity of interest in the index of total effects, which 

quantifies the variance caused by the variation of every variable except for Xi, defined as: 

 

𝑆𝑇𝑖 = 1 −
𝑉[𝐸(𝑌 𝑋(𝑖)⁄ )]

𝑉(𝑌)
         (3) 

 

and calculated by the Saltelli method as: 

 

𝑆𝑇𝑖 = 1 −
𝑦𝐵⋅𝑦𝐶𝑖−𝑓0

2

𝑦𝐴⋅𝑦𝐴−𝑓0
2 = 1 −

(1 𝑁⁄ )∑𝑁j=1 𝑦𝐵
(𝑗)
𝑦𝐶𝑖
(𝑗)
−𝑓0

2

(1 𝑁⁄ )∑𝑁j=1 (𝑦𝑎
(𝑗)
)2−𝑓0

2
     (4) 

 

When input interactions are relevant to the model, STi > Si, the difference accounting for higher 

order effects. In additive models, this should not be the case, with STi = Si and the sum of first order 

sensitivity indices equals to 1. 

By definition, the indices given by Equations (1) and (3) are positive. Since Equations (2) and (4) 

operate based on random sampling, their results may be negative (though when N is sufficiently large 

these values should be equal to zero when rounded). In order to minimize statistical error, multiple 

simulations were run, and their results averaged. That also allowed for the calculation of  standard 

error pertaining to each index, making it possible to determine which indices were statistically equal 

to zero. In this work, 10 simulations with N=2000 were run. 
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As additional evidence pertaining to the additivity of the model and relative importance of input 

parameters, Spearman’s rank-order correlations between results yA and each column of inputs were 

calculated. Spearman correlation is equal to the Pearson correlation, given by Equation (5), but using 

the ranks of data (highest value, 2nd highest, and so forth) rather than their absolute values. 

 

ρ =
𝑐𝑜𝑣(𝑥,𝑦)

σ𝑥σ𝑦
            (5) 

Where x and y are sets of data (or sets of ranks of data), cov is the covariance between data sets, 

and σ is the standard deviation of the considered variables [10]. 

Studying the correlation between ranks of data rather than data itself makes Spearman correlation 

indexes useful for assessment of monotonic relationships, whether linear or not. An example of usage 

of Spearman rank-order correlations in sensitivity analysis can be found in reference [9]. 

 

Uncertainty analysis 

As mentioned in the above section, ten simulations with 2000 samples each were run. Taking the 

yA results from each simulation, a total of 20,000 points of data are obtained, which are used to 

generate histograms of the distribution of each of the three outputs considered. Qualitative analysis 

of the histograms allows to verify if the general behavior matches that of a normal distribution, and a 

gaussian is fitted to the histogram data points to provide additional confirmation. The mean and 

standard deviation obtained from the histogram are compared to the mean and standard deviation 

calculated straight from the data. 

From this mean and standard deviation it is possible to calculate the confidence intervals of each 

of the considered output parameters. According to Wilk’s formula, to guarantee that a quantity α of 

the samples are within a β confidence interval, a minimum of n samples are necessary, where: 

 

1 − 𝛼𝑛 − 𝑛(1 − 𝛼)𝛼𝑛−1 ⩾ 𝛽          (5) 

 

For α = 0.95 (95% of the samples) and β = 0.95 (95% confidence interval), at least 93 samples 

are required. As the number of samples available greatly surpasses that, the calculated interval has at 

least 95% confidence. 
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Input values and reactor power cycles 

Thirteen input parameters were considered subject to fabrication uncertainties. Twelve of them 

represent variables of the TRANSURANUS code, their names and physical meaning described in 

Table 1. The thirteenth variable described in the table refers to a ratio to be multiplied by a vector of 

code variables. 

 

Table 1: Names of TRANSURANUS input parameters subject to variation. 

Variable name Description 

RAH Outer radius of the cladding [mm] 

pi0ein Filling gas pressure [MPa] 

enriU235 Initial concentration (“enrichment”) of U-235 (/) 

ozum0 Average ratio between oxide and metal atoms (/) 

RAB Outer radius of the fuel [mm] 

prodis Fraction of dish volume to pellet volume (/) 

korngr Fabrication grain size diameter in the fuel [mm] 

por000 Average fabrication porosity of the fuel (/) 

denpor Minimum porosity at the end of densification. 

RIH Inner radius of the cladding [mm] 

uplvg Lower plenum volume [mm3] 

openpor Open porosity (/) 

hhrate Ratio to be multiplied by the active length of the fuel. 

 

As these input parameters refer to fabrication parameters, normal distribution was considered as 

an adequate representation. A maximum and minimum values were also defined, at which the 

distribution was truncated, representing the fact that fabricated pieces that do not fit design criteria 

are rejected and not used in the reactor. The nominal values, standard errors and maximum and 

minimum values were defined based on those of commercial PWR reactors, and are shown in Table 

2. 
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Table 2: Values of TRANSURANUS input variables. 

Variable name Mean Standard deviation Minimum Maximum 

RAH 4.900 0.025 4.875 4.925 

pi0ein 2.76 -0.35/+0 2.41 2.76 

enriU235 0.0430 0.0004 0.0426 0.0434 

ozum0 2.00 0.02 2.00 2.02 

RAB 4.245 0.005 4.240 4.250 

prodis 0.018 0.002 0.010 0.030 

korngr 0.0061 0.0080 0.0040 0.0250 

por000 0.060 0.009 0.051 0.069 

denpor 0.0381 0.0080 0.0270 0.0550 

RIH 4.30 0.02 4.28 4.32 

uplvg 210.10 68.99 73.05 349.02 

openpor 0.04 0.04 0 0.04 

hhrate 1.00 0.01 1.00 1.01 

 

As for the boundary conditions of the simulation, the hypothetical reactor was subject to a power 

cycle where, during the beginning of life of the fuel, the linear rod power was abruptly raised from 

30% to 100%, being kept in full power for ten days at a time, and descending abruptly back to the 

30% mark. This cycle, shown in Figure 1, is repeated five times, after which operation is kept at a 

30% level until 26,400 hours (approximately 3 years) of operation are reached. 
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Figure 1: Operation power cycles. 

 

3. RESULTS AND DISCUSSION 

 

At the end of the ten runs of simulations, ten tables of Spearman ranking correlations were 

generated, one for each A sample group. Only two of such will be shown here, in Tables 3 and 4, in 

order to exemplify the qualitative likeness of the obtained results. The highest correlation indices in 

absolute values are shown in bold italics to facilitate their location in both tables. 
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Table 3: Spearman ranking correlations obtained from simulation 1 

 Spearman ranking correlations 

Uncertain Inputs 
Fuel centerline 

temperature 
Fuel rod pressure Cladding creep strain 

RAH 0.0323 0.0243 -0.5458 

pi0ein -0.0133 0.9587 -0.5120 

enriU235 -0.0005 -0.0074 0.0065 

ozum0 0.0135 0.0140 -0.0124 

RAB -0.1967 -0.0572 0.0212 

prodis 0.0101 0.1355 -0.0418 

korngr -0.0009 0.0031 0.0027 

por000 0.5251 -0.0036 0.3214 

denpor -0.4406 0.0419 -0.4538 

RIH 0.6509 0.2468 0.3009 

uplvg -0.0416 0.0104 -0.0476 

openpor 0.0006 0.0209 -0.0161 

hhrate 0.0053 -0.0340 0.0361 

Sum of ρ² 0.9354 1.0059 0.9661 
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Table 4: Spearman ranking correlations obtained from simulation 6 

 Spearman ranking correlations 

Uncertain Inputs 
Fuel centerline 

temperature 
Fuel rod pressure Cladding creep strain 

RAH 0.0093 0.0090 -0.5407 

pi0ein -0.0011 0.9581 -0.4926 

enriU235 0.0222 0.0129 0.0260 

ozum0 0.0252 0.0105 0.0112 

RAB -0.1568 -0.0590 0.0332 

prodis 0.0162 0.1464 -0.0614 

korngr -0.0260 0.0040 0.0106 

por000 0.5500 -0.0446 0.3505 

denpor -0.4611 -0.0141 -0.4442 

RIH 0.6624 0.2522 0.3363 

uplvg 0.0132 -0.0280 0.0150 

openpor 0.0316 0.0069 0.0327 

hhrate 0.0118 -0.0302 0.0386 

Sum of ρ² 0.9819 1.0109 0.9769 

 

The input factors considered relevant agree throughout the ten simulations: outer radius of the 

fuel and inner radius of the cladding (which together define the gap between fuel and cladding) as 

well as fabrication porosity and porosity at the end of densification are the most important factors for 

fuel center line temperature; filling gas pressure, ratio between dish and pellet volume and inner 

radius of the cladding are relevant to pressure of the fuel rod; and cladding creep strain is mostly 

affected by cladding outer and inner radius (cladding thickness), filling gas pressure, fabrication 

porosity, porosity at the end of densification and fuel pellet radius. 

For correlation indices too close to zero (inferior to 0.05), signs vary between positive and 

negative, accounting for the statistical nature of the analysis. The sums of rho² throughout the 

simulations show that TRANSURANUS model for the chosen outputs are strongly additive, though 
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variance as to how close they are to the unity makes it so that they can’t be declared – by this method 

alone – perfectly additive. 

The sensitivity indices calculated by Equation (2) do not agree so well among themselves. Tables 

5 and 6 were chosen from the ten sets of calculated indices to exemplify their discrepancies. Because 

of these discrepancies, no values were highlighted as most important. 

 

Table 5: First order sensitivity indices from simulation 1 

 Sensitivity indices 

Uncertain Inputs 
Fuel centerline 

temperature 
Fuel rod pressure Cladding creep strain 

RAH -0.0619 0.0490 0.3438 

pi0ein 0.0082 0.9122 0.2197 

enriU235 -0.1514 0.0575 0.0433 

ozum0 -0.1579 0.0437 0.0433 

RAB -0.0889 0.0406 0.0399 

prodis -0.1075 0.0688 0.0396 

korngr -0.1141 0.0487 0.0433 

por000 0.2593 0.0803 0.1424 

denpor 0.2798 0.0615 0.2280 

RIH 0.2804 0.0942 0.1725 

uplvg -0.0112 0.0614 0.0369 

openpor -0.1461 0.0431 0.0433 

hhrate -0.0580 0.0537 0.0431 

Sum of Si -0.0693 1.6147 1.4391 

 

 

 

 

 

 



 Dantas and Silva ● Braz. J. Rad. Sci. ● 2021 12 

 

Table 6: First order sensitivity indices from simulation 6 

 sensitivity indices 

Uncertain Inputs 
Fuel centerline 

temperature 
Fuel rod pressure Cladding creep strain 

RAH 0.0391 0.0096 0.3717 

pi0ein 0.1518 0.8762 0.3525 

enriU235 0.1175 0.0043 0.0567 

ozum0 0.1638 0.0036 0.0566 

RAB 0.0108 0.0105 0.0521 

prodis -0.0725 0.0066 0.0549 

korngr 0.0266 0.0051 0.0567 

por000 0.3664 0.0009 0.1624 

denpor 0.3220 0.0305 0.2540 

RIH 0.6679 0.0816 0.1291 

uplvg 0.0089 0.0011 0.0528 

openpor 0.1806 0.0043 0.0566 

hhrate 0.0182 0.0070 0.0563 

Sum of Si 2.0011 1.0413 1.7124 

 

The first noteworthy feature of Tables 5 and 6 is the presence of negative numbers with high 

absolute value. As those indices are obtained by statistical methods, fluctuations around zero are to 

be expected, but Table 5 shows multiple values inferior than -0.10, greatly compromising the premise 

that the sum of indices Si in additive models should be equal to 1. The comparison between the first 

three lines of the temperature column in both tables shows that simulations cannot agree about which 

indices are nearly zero and which ones are positive or negative. For the indices considered relevant 

by the correlations, agreement was better, though not perfect, demonstrating the need of averaging 

the results of simulations as discussed in the previous section. 

Table 7 shows the averaged vales of first order sensitivity indices, with standard deviation 

obtained from the variance of the ten results. These standard deviations were used to define which 

values are statistically different from zero, such values are presented in bold italics. 
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Table 7: Averaged first order sensitivity indices 

 sensitivity indices 

Uncertain Inputs 
Fuel centerline 

temperature 
Fuel rod pressure Cladding creep strain 

RAH 0.0512 ± 0.1188 0.0038 ± 0.0294 0.3036 ± 0.0533 

pi0ein 0.0590 ± 0.1168 0.9167 ± 0.0213 0.2538 ± 0.0558 

enriU235 -0.0040 ± 0.1009 0.0025 ± 0.0309 0.0151 ± 0.0562 

ozum0 0.0096 ± 0.0966 -0.0005 ± 0.0248 0.0151 ± 0.0562 

RAB 0.0306 ± 0.0718 0.0095 ± 0.0284 0.0134 ± 0.0565 

prodis 0.0070 ± 0.1181 0.0146 ± 0.0307 0.0175 ± 0.0577 

korngr 0.0020 ± 0.0805 0.0020 ± 0.0270 0.0151 ± 0.0562 

por000 0.2707 ± 0.1283 -0.0033 ± 0.0420 0.1365 ± 0.0469 

denpor 0.2401 ± 0.0680 -0.0052 ± 0.0336 0.2152 ± 0.0417 

RIH 0.4772 ± 0.1294 0.0627 ± 0.0263 0.1349 ± 0.0612 

uplvg 0.0200 ± 0.0842 0.0027 ± 0.0298 0.0152 ± 0.0540 

openpor 0.0129 ± 0.0982 -0.0003 ± 0.0251 0.0151 ± 0.0562 

hhrate 0.0174 ± 0.0504 0.0008 ± 0.0270 0.0150 ± 0.0562 

Sum of Si 1.1936 ± 0.3605 1.0061 ± 0.1058 1.1657 ± 0.1971 

 

Table 7 is qualitatively closer to the results of correlation indices shown in Tables 3 and 4, though 

the importance of RAB and prodis was removed. The sum of sensitivity indices now is close to the 

unity, though a large standard variation makes it hard to declare the model as 100% additive. Finally, 

Table 8 shows the averaged total effects indices, which, when compared to the first order indices 

allow the detection of second order effects. The indices statistically different from zero are shown in 

bold italics. 
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Table 8: Averaged total effects indices 

 sensitivity indices 

Uncertain Inputs 
Fuel centerline 

temperature 
Fuel rod pressure Cladding creep strain 

RAH -0.0715 ± 0.1977 -0.0016 ± 0.0602 0.2832 ± 0.1156 

pi0ein -0.0781 ± 0.2058 0.9170 ± 0.0367 0.2408 ± 0.1089 

enriU235 -0.0163 ± 0.1977 -0.0002 ± 0.0599 -0.0187 ± 0.1225 

ozum0 -0.0411 ± 0.1973 0.0026 ± 0.0533 -0.0187 ± 0.1225 

RAB 0.0187 ± 0.1617 -0.0007 ± 0.0643 -0.0144 ± 0.1223 

prodis -0.0268 ± 0.2003 0.0243 ± 0.0597 -0.0099 ± 0.1234 

korngr -0.0209 ± 0.1787 0.0000 ± 0.0555 -0.0187 ± 0.1225 

por000 0.3288 ± 0.2052 0.0062 ± 0.0618 0.0854 ± 0.1072 

denpor 0.1653 ± 0.1438 0.0095 ± 0.0511 0.2016 ± 0.1125 

RIH 0.4032 ± 0.2017 0.0593 ± 0.0565 0.1003 ± 0.1118 

uplvg -0.0406 ± 0.1751 -0.0002 ± 0.0576 -0.0183 ± 0.1205 

openpor -0.0448 ± 0.1968 0.0023 ± 0.0541 -0.0187 ± 0.1225 

hhrate -0.0374 ± 0.1395 0.0014 ± 0.0553 -0.0185 ± 0.1224 

 

Careful comparison between Tables 7 and 8 reveals that some total effects indices are inferior to 

their respective first order sensitivity indices. In theory this should not occur, but it can also be 

credited to statistical fluctuations. In any case, comparison between indices does not allow to identify 

second order effects. 

As for the uncertainty analysis, Table 9 shows the obtained mean, average and confidence 

intervals for the considered outputs, while Figures 2, 3 and 4 show the Gaussian curves fitted to their 

respective histograms. 
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Table 9: Results of uncertainty analysis 

Output 
Mean and standard 

deviation 
Confidence interval 

Fuel center line temperature (°C) 1296.1 ± 56.6 [1185.0, 1407.1] 

Fuel rod pressure (MPa) 5.16 ± 0.20 [4.77, 5.56] 

Cladding creep strain (%) 0.0137 ± 0.0005 [0.0128, 0,0147] 

 

 

Figure 2: Distribution of fuel center line temperature results (°C). 
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Figure 3: Distribution of fuel rod inner pressure results (MPa). 

Figure 4: Distribution of cladding creep strain results (%). 
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4. CONCLUSIONS 

 

The method chosen to determine the relative importance of input factors showed itself adequate, 

though the discrepancies between first order sensitivity indices and total effects indices suggest the 

number of samples in each simulation could be higher in order to offer better statistics. 

For the case of TRANSURANUS code subject to abrupt changes in irradiation during the 

beginning of life, it was shown that fuel center temperature, fuel rod inner pressure and cladding creep 

strain stay well within safety limits. The input factors considered most important for the temperature 

are average fabrication porosity (responsible for 24% of temperature variance), porosity at the end of 

densification (24%) and cladding inner radius (47%). For the pressure, important inputs are initial fill 

gas pressure (92%) and cladding inner radius (6%). For the creep strain, cladding inner and outer 

radius were responsible for 13% and 30% of variance, respectively; other important factors were 

filling gas pressure (25%), average porosity (13%) and porosity at the end of densification (21%). 

Based on those results, TRANSURANUS models for the relevant outputs are considered additive, 

and no input interactions (second order effects) are present. 
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