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ABSTRACT 

 

In source–detector problems, neutron leakage is a quantity of interest that could lead to improve shielding 

structures, thus reducing the dose received by humans. In this work, we apply an adjoint technique with 

spectral nodal methods to compute neutron leakage in multigroup one– and two–dimensional problems in the 

discrete ordinates (𝑺𝑵) formulation. The use of the adjoint technique to calculate the leakages due to various 

source distributions is very convenient as it is possible to run adjoint problems and store the neutron importance 

maps. Here we solve the homogeneous adjoint 𝑺𝑵 transport equation by considering unit outgoing adjoint flux 

at the boundary. In order to numerically solve slab– and 𝑿, 𝒀–geometry problems, we use spectral nodal 

methods that have been widely applied and discussed in the literature. Numerical results are given to illustrate 

the present adjoint technique to estimate the neutron leakage for each energy group in source–detector 

problems. For all the test problems, the results obtained by the adjoint technique as described in this paper do 

agree with the results obtained by solving the analogous forward problem. 

 

Keywords: neutron leakage, adjoint transport problem, discrete ordinates, spectral nodal method, energy 

multigroup 
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 INTRODUCTION 

 

It is well known that the linear Boltzmann transport operator is non self–adjoint and the solution 

of the adjoint transport equation can play a very useful role in the simulation of a wide variety of 

nuclear engineering problems [1; 2]. In fact, the adjoint flux can be interpreted as a function of 

importance that quantifies the relative contribution of neutral particles to a desired physical quantity, 

such as the detector response for problems in non–multiplying media.  

During the last decades, the adjoint technique has been extensively applied along with 

deterministic methods for discrete–ordinates (𝑆𝑁) calculations. Two classes of problems have been 

solved within this scope: source–detector problems and the estimation of interior neutron source 

distribution [3]. Some of recent contributions are related to solving slab–geometry and two–

dimensional problems by using spectral nodal methods [3; 4; 5; 6]. In the referenced works, for the 

sake of computing quantities inside the structural domain, zero outgoing adjoint flux has been 

considered as prescribed boundary conditions. This is consistent with the concept of importance since 

particle leakage through the boundaries does not contribute to the system’s particle population.  

On the other hand, in shielding calculations, leakage of particles is a desired quantity to determine 

the dose received by people in the vicinity of a shielding structure containing radioactive material. 

With an appropriate choice of adjoint boundary condition, the numerical solution of the adjoint 

transport equation would be more efficient than solving the forward problem. For external detector 

locations, measuring the importance of outgoing particles, the adjoint boundary conditions require 

modification [2]. According to Reference [2], in order to estimate the total leakage from the domain, 

given a unidirectional and monoenergetic incident beam, the homogeneous adjoint transport equation 

must be solved by considering unit outgoing adjoint flux at the boundaries. In such cases, particles 

exiting the domain will be more important to the detector than any other interior particle. To the best 

of our knowledge, this methodology has not been applied to 𝑆𝑁 transport problems.   

In this work, we use this basic idea in spectral nodal methods to calculate neutral particle leakage 

for energy multigroup adjoint 𝑆𝑁 transport problems in slab– and 𝑋, 𝑌–geometry. We consider the 

homogeneous adjoint 𝑆𝑁 problem and unit adjoint flux in the exiting directions as boundary 

conditions. The remainder of this paper is structured as follows. In Section 2, the adjoint 𝑆𝑁 equations 
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are presented, and the methodology used for estimating the group leakage is described. Numerical 

results to two model problems are presented and discussed in Section 3 and Section 4 offers a number 

of general concluding remarks and suggestions for future work. 

 

 MATERIALS AND METHODS 

 

The adjoint problem should not be considered independent of the forward transport problem. 

Thus, the proper identification of the adjoint source and adjoint boundary conditions in addition to 

the “importance” meaning of the adjoint flux make possible to determine physically significant 

quantities. In source–detector problems, it can be proven [1; 2] that the solutions to the forward and 

adjoint transport problems, i. e., the neutral particle angular flux (𝜓) and the adjoint angular flux 

(𝜓†), respectively, are related by the reciprocity condition 

⟨𝜓, 𝑄†⟩   =   ⟨𝜓†, 𝑄⟩  − ∫ 𝑑Γ 
Γ

∫ 𝑑𝐸
∞

0

∫  𝑑𝛺
4𝜋

 𝒏 ∙ 𝜴  𝜓†(𝒓, 𝐸, 𝜴) 𝜓(𝒓, 𝐸, 𝜴), 𝒓 ∈ 𝛤.  (1) 

In Equation (1), the second term on the right–hand side is the bilinear concomitant, 𝑄† is the adjoint 

source, 𝑄 is the source of particles, ⟨·,·⟩ represents the integration over the independent variables, and 

𝛤 is the boundary surface of the domain. 

Let us now consider the homogeneous adjoint problem and unit adjoint flux in the exiting 

directions all over the boundary, i. e., 𝑄† = 0 and 𝜓†(𝒓, 𝐸, 𝜴) = 1, 𝒓 ∈ 𝛤, 𝒏 ∙ 𝜴 > 𝟎, respectively. 

Thus, Equation (1) appears as 

0 = ⟨𝜓†, 𝑄⟩ + ∫  𝑑Γ ∫ 𝑑𝐸 ∫ 𝑑Ω  |𝒏 ∙ 𝜴|
𝒏∙𝜴 <𝟎

∞

0Γ

 𝜓†(𝒓, 𝐸, 𝜴) 𝜓(𝒓, 𝐸, 𝜴) 
 

− ∫ 𝑑Γ 
Γ

 ∫ 𝑑𝐸
∞

0

 ∫ 𝑑Ω  
𝒏∙𝜴 >𝟎

 𝒏 ∙ 𝜴  𝜓(𝒓, 𝐸, 𝜴)  ,      𝒓 ∈ 𝛤.                  (2) 

We note at this point that the third term on the right–hand side in Equation (2) is the total leakage 𝐽† 

through the surface 𝛤, which can be written as 

𝐽†   =   ⟨𝜓†, 𝑄⟩  +   ∫𝑑
𝛤

𝛤 ∫ 𝑑𝐸
∞

0

∫ 𝑑𝛺
𝒏⋅𝜴<0

  |𝒏 ⋅ 𝜴|  𝜓†(𝒓, 𝐸, 𝜴)  𝜓(𝒓, 𝐸, 𝜴)  ,    𝑟 ∈ 𝛤  . (3) 
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2.1. The adjoint 𝑺𝑵 in slab geometry 

Here we consider steady–state problems in slab geometry and non–multiplying media. For this 

purpose, let us consider a multilayer slab 𝐷1 of thickness 𝐻, as represented in Figure 1. Each region 

𝛶𝑗 has width ℎ𝑗 and constant material parameters, 𝑗 =  1 ∶  𝐽, where 𝐽 is the total number of regions. 

Now we write the energy multigroup, slab–geometry adjoint 𝑆𝑁  equations in 𝛶𝑗, considering arbitrary 

𝐿’𝑡ℎ order of scattering anisotropy, provided 𝐿 < 𝑁 [1] 

−𝜇𝑚

𝑑

𝑑𝑥
𝜓𝑚𝑔

† (𝑥) + 𝛴𝑇𝑔
𝑗

 
𝜓𝑚𝑔

† (𝑥) = ∑
2𝑙 + 1

2
 𝑃𝑙(𝜇𝑚)

𝐿

𝑙=0

∑ 𝛴𝑆 𝑔→𝑔′
(𝑙) 𝑗

𝐺

𝑔′=1

 ∑ 𝑃𝑙(𝜇𝑛) 𝜔𝑛 𝜓𝑛𝑔′
† (𝑥)

𝑁

𝑛=1

 

 

  𝑔 = 1: 𝐺, 𝑚 = 1: 𝑁, 𝑗 = 1: 𝐽, 𝑥 ∈ 𝛶 . (4) 

The notation in Equation (4) is standard [1; 2; 5]. 

 

 

Figure 1: Spatial grid on slab 𝐷1: 0 ≤  𝑥 ≤  𝐻. 

Source: Reference [5] 

 

For slab–geometry 𝑆𝑁, according to Equation (3), the particle leakage through boundary 𝑏 (𝑥1/2 

or 𝑥𝐽+1/2) for the energy group 𝑔 can be written as 

ℐ𝑏,𝑔
†  =  ∫ 𝑑𝑥

𝐻

0

 ∑ 𝑄𝑔′

𝐺

𝑔′=1

(𝑥) ∑ 𝜔𝑛 𝜓𝑛 𝑔′
† 𝑏,𝑔

 (𝑥)

𝑁

𝑛=1

  
 

+ ∑ ∑ 𝜇𝑛 𝜔𝑛 𝜓𝑛 𝑔′
† 𝑏,𝑔

 (0) 𝑓𝑛 𝑔′(0)

𝑁/2

𝑛=1

𝐺

𝑔′=1

 + ∑ ∑ |𝜇𝑛| 𝜔𝑛 𝜓𝑛 𝑔′
† 𝑏,𝑔

 (𝐻) 𝑓𝑛 𝑔′(𝐻)

𝑁

𝑛=
𝑁
2

+1

𝐺

𝑔′=1

 , (5) 

where the quantity 𝜓𝑛 𝑔′
† 𝑏,𝑔

 (𝑥) is the adjoint flux generated by using boundary conditions consisting 

of a unit adjoint flux for the energy group of interest 𝑔 in the exiting directions at boundary 𝑏 and 

equal to zero for all the other energy groups and boundary. Moreover, the quantities 𝑄 and 𝑓 represent 
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the interior sources of particles and the prescribed incident flux of particles on the boundaries, 

respectively. 

To obtain the adjoint flux, Equation (4) must be solved. In this work, we use the adjoint spectral 

Green's function (SGF†) method [3] with the adjoint partial one–region block inversion scheme that 

generates numerical solutions that are completely free from spatial truncation errors. Therefore, it is 

possible to perform an analytical reconstruction inside the homogenized regions by considering the 

numerical coarse–mesh solution for the region–edge adjoint angular fluxes. 

 

2.2. The adjoint 𝑺𝑵 in 𝑿, 𝒀– geometry 

In this subsection, we consider a two–dimensional rectangular domain 𝐷2 whereon a 

discretization spatial grid composed of 𝐼 × 𝐽 homogeneous nodes 𝑑𝑖,𝑗 (ℎ𝑥𝑖 cm × ℎ𝑦𝑗 cm), 𝑖 = 1 ∶  𝐼 

and 𝑗 = 1 ∶  𝐽 is set, viz Figure 2. The material parameters are uniform within 𝑑𝑖,𝑗 .   

 

Figure 2: Rectangular spatial grid on the domain 𝐷2. 

Source: Reference [6] 

 

Therefore, the steady–state adjoint multigroup 𝑆𝑁 transport equations with linearly anisotropic 

scattering in non–multiplying media on 𝑑𝑖,𝑗 appear as 
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− 𝜇𝑚

𝜕

𝜕𝑥
𝜓𝑚𝑔

† (𝑥, 𝑦)  − 𝜂𝑚

𝜕

𝜕𝑦
𝜓𝑚𝑔

† (𝑥, 𝑦)  + 𝛴𝑇𝑔
𝑖,𝑗

 
𝜓𝑚𝑔

† (𝑥, 𝑦) 
 

=
1

4
 ∑ ∑ [𝛴𝑆 𝑔→𝑔′

(0)𝑖,𝑗
+ 3 𝛴𝑆 𝑔→𝑔′

(1)𝑖,𝑗 (𝜇𝑚𝜇𝑛 + 𝜂𝑚𝜂𝑛)] 𝜔𝑛 𝜓𝑛𝑔′
† (𝑥, 𝑦)

𝑀

𝑛=1

𝐺

𝑔′=1

  ,  

  𝑔 = 1: 𝐺, 𝑚 = 1: 𝑀, 𝑖 = 1: 𝐼, 𝑗 = 1: 𝐽, (𝑥, 𝑦) ∈ 𝑑𝑖,𝑗  . (6) 

A detailed description of the notation used in Equation (6) can be found in [6; 7]. In addition, for 

multigroup 𝑆𝑁 formulations, Equation (3) appears as 

𝒥𝑏,𝑔
†  =  ∑ 𝑄𝑔′

𝐺

𝑔′=1

 ∑ ∑ ℎ𝑥𝑖  ℎ𝑦𝑗

𝑁𝑌

𝑗=1

𝑁𝑋

𝑖=1

 
1

4
 ∑ 𝜔𝑛  �̅�

𝑛 𝑔′,𝑖,𝑗
† 𝑏,𝑔  

𝑀

𝑛=1

+  ∑ ℎ𝑥𝑖 

𝐼

𝑖=1

∑ ∑|𝜂𝑛| 𝜔𝑛 �̂�
𝑛 𝑔′,𝑖
† 𝑏,𝑔  (0) 𝑓𝑛 𝑔′

𝐵

𝑀/2

𝑛=1

𝐺

𝑔′=1

  

 

 + ∑ ℎ𝑦𝑗  

𝐽

𝑗=1

∑ ∑ |𝜇𝑛| 𝜔𝑛  �̃�
𝑛 𝑔′,𝑗
† 𝑏,𝑔  (𝐻𝑥) 𝑓𝑛 𝑔′

𝑅

3𝑀/4

𝑛=𝑀/4

𝐺

𝑔′=1

+  ∑ ℎ𝑥𝑖  

𝐼

𝑖=1

∑ ∑ |𝜂𝑛| 𝜔𝑛 �̂�
𝑛 𝑔′,𝑖
† 𝑏,𝑔  (𝐻𝑦) 𝑓𝑛 𝑔′

𝑇

𝑀

𝑛=𝑀/2

𝐺

𝑔′=1

  

     + ∑ ℎ𝑦𝑗 

𝐽

𝑗=1

∑ [∑  +

𝑀/4

𝑛=1

∑ .

𝑀

𝑛=3𝑀/4

] |𝜇𝑛| 𝜔𝑛 �̃�
𝑛 𝑔′,𝑗

† 𝑏,𝑔
 (0) 𝑓𝑛 𝑔′

𝐿     .

𝐺

𝑔′=1

 (7) 

 

Here 𝒥𝑏,𝑔
†   is the leakage through boundary 𝑏 in the energy group 𝑔; the quantities �̃�

𝑛 𝑔′,𝑗
†  (𝑥) and 

�̂�𝑛 𝑔′,𝑖
†  (𝑦)  are the group average adjoint angular flux over the spatial coordinate direction 𝑦 and 𝑥 

within 𝑑𝑖,𝑗, respectively; �̅�𝑛 𝑔′,𝑖,𝑗
†

 is the group node–average adjoint angular flux in 𝑑𝑖,𝑗; and the 

superscript 𝑏, 𝑔 indicates that the adjoint fluxes are calculated by considering boundary conditions 

that consist of unit outgoing adjoint angular flux only for the energy group 𝑔 on boundary 𝑏; 

otherwise, it is set equal to zero. The first term on the right–hand side represents the leakage due to 

a source of particles 𝑄 located in a given region discretized with a rectangular grid composed of 

𝑁𝑋 × 𝑁𝑌 nodes. The second through the fourth terms on the right–hand side refer to the leakage due 

to prescribed incident flux of particles (𝑓) at the bottom (𝐵), right (𝑅), top (𝑇) and left (𝐿) boundaries, 

respectively. 

To numerically solve the adjoint transport problem in Equation (6), we use the adjoint spectral 

Green's function–constant nodal (SGF†–CN) method [6] with the adjoint partial one–node block 
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inversion iterative scheme. The SGF†–CN method has been successfully applied to fixed–source 

multigroup adjoint 𝑆𝑁 problems in 𝑋, 𝑌–geometry [6]. Only the terms referred to as the transverse 

leakage in the adjoint transverse–integrated 𝑆𝑁 nodal equations are approximated by constants, as the 

scattering source terms are treated analytically in the spectral nodal class of numerical methods. The 

SGF†–CN method is less sensitive to the spatial discretization grid for coarse–mesh calculations and 

offers running time economy when compared with the conventional fine–mesh methods [6]. 

 

 RESULTS AND DISCUSSION 

 

In this section, we present numerical results to two typical problems by using the adjoint 

technique, as described in the present work. Since the algebraic expressions, methodology and 

accuracy of the SGF† [3] and SGF†–CN [6] methods have been thoroughly discussed in the literature, 

in this work we present results to the leakage computation by using the adjoint technique compared 

to the forward problem rather than comparing the numerical results with other methods.  

 

3.1. Model–Problem No 1 

Let us first consider a six–group problem with triplet scattering order (𝐿 = 3). The problem 

consists of a 30 cm–thick water slab which is bombarded on the left boundary (𝑥 = 0) by a uniform 

isotropic source (𝑓𝐿) with energy range in the first group and vacuum condition for the right 

boundary. This problem presents strong upscattering and the details about the material cross sections 

can be found in References [8; 9].  Here, we also consider two interior radiation sources 𝑄𝑔
1 =  𝛿1,𝑔 

cm–3s–1 and 𝑄𝑔
2 =  2𝛿1,𝑔 cm–3s–1 located in the regions 7.5 ≤ 𝑥 ≤ 15.0 cm and 15.0 ≤ 𝑥 ≤ 22.5 cm, 

respectively. Here 𝛿1,𝑔 is the Kronecker delta. 

To model the adjoint transport problem (Equation (4)), we used the 𝑆16 Gauss–Legendre angular 

quadrature set [1]. First, we solved the 𝑆𝑁 adjoint problem by using the SGF† on a spatial grid 

consisting of one node per region. Then, the importance maps were substituted into the corresponding 

terms of Equation (5) to estimate the group leakages. 

In Table 1 we list the numerical results for the group leakages through the left and right 

boundaries (ℐ𝐿,𝑔
†  and ℐ𝑅,𝑔

†
, respectively) due to interior and boundary sources of particles. In all cases, 



 Curbelo J. P. et al.  ● Braz. J. Rad. Sci. ● 2022 8 

the results generated by the present adjoint technique, and the ones obtained from solving the forward 

problem under similar conditions do agree up to the sixth decimal place. We remark that, as can be 

inferred from Equation (5), to obtain the results displayed in Table 1, for each of the 6 energy groups 

individually, we solved 12 adjoint 𝑆16 problems (6 groups × 2 adjoint boundary sources). This allows 

to store the importance maps and perform leakage calculations a posteriori due to several 

distributions and intensities of sources of particles. 

 

Table 1: Group leakage estimation for Model–Problem No 1 (SGF† method, spatial grid of one 

node per region, 𝑆16 Gauss–Legendre model). 

    𝑓𝐿  a 𝑄𝑔
1  b 𝑄𝑔

2  c Total leakage 

𝑔 = 1 
ℐ𝐿,𝑔

†  d 1.439510e–02 1.496967e–04 4.486395e–08 1.454484e–02 

ℐ𝑅,𝑔
†  e 1.462414e–15 4.486395e–08 1.496967e–04 1.497416e–04 

𝑔 = 2 
ℐ𝐿,𝑔

†  4.996340e–02 7.243481e–02 3.793162e–03 1.261914e–01 

ℐ𝑅,𝑔
†  5.495680e–07 3.793162e–03 7.243481e–02 7.622852e–02 

𝑔 = 3 
ℐ𝐿,𝑔

†  8.152687e–02 1.655983e–01 8.698544e–03 2.558237e–01 

ℐ𝑅,𝑔
†  1.260303e–06 8.698544e–03 1.655983e–01 1.742981e–01 

𝑔 = 4 
ℐ𝐿,𝑔

†  8.511066e–03 1.619353e–02 8.505659e–04 2.555516e–02 

ℐ𝑅,𝑔
†  1.232356e–07 8.505659e–04 1.619353e–02 1.704422e–02 

𝑔 = 5 
ℐ𝐿,𝑔

†  1.635878e–04 2.832014e–04 1.487287e–05 4.616621e–04 

ℐ𝑅,𝑔
†  2.154878e–09 1.487287e–05 2.832014e–04 2.980764e–04 

𝑔 = 6 
ℐ𝐿,𝑔

†  1.919790e–06 2.686348e–06 1.410225e–07 4.747161e–06 

ℐ𝑅,𝑔
†  2.043220e–11 1.410225e–07 2.686348e–06 2.827391e–06 

a  𝑓𝐿 : Uniform isotropic flux on the left boundary (𝑥 = 0) 

b, c  𝑄𝑔 
1 , 𝑄𝑔

2 : Interior radiation sources located in regions 7.5 ≤ 𝑥 ≤ 15.0 cm and 15.0 ≤ 𝑥 ≤ 22.5 cm 

d, e  ℐ𝐿,𝑔
†  , ℐ𝑅,𝑔

† : Group leakages through the left and right boundaries 
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3.2. Model–Problem No 2 

For the sake of solving a two–dimensional test problem, we have adapted one, first solved in [6], 

which consists of shielding calculations considering 10 energy groups and linearly anisotropic 

scattering. Figure 3 represents one–fourth of the whole shielding structure and the macroscopic cross 

sections (cm−1) of each material zone (𝑧 = 1: 3) are listed in Table 2. 

 

Table 2: Macroscopic cross sections (cm−1) for Model–Problem No 2 . 

𝛴𝑇 𝑔,𝑧  =  (
𝑧 + 20

21
)

5

(
𝑔

10
− 0.15 𝛿5,𝑔  − 0.15 𝛿10,𝑔)  ,    𝑔 = 1: 10 

𝛴𝑆 𝑔′→𝑔,𝑧
(𝑙)𝑖,𝑗 = (

𝑧 + 20

21
) (

𝑔′

100(𝑔 − 𝑔′ + 1)
) (0.7 −  

𝑔 + 𝑔′

200
)

𝑙

, 𝑔 = 1: 10, 𝑔′ = 1: 𝑔, 𝑙 = 0: 1 

 

 

 

Figure 3: Geometry and material distribution for Model–Problem No 2. 

Source: Authors 

 

Now we perform the numerical experiment of estimating the leakage of neutral particles through 

the right and top boundaries due to the radiation source 𝑄𝑔 = (1.1 − 0.1𝑔) cm−3s−1, 𝑔 = 1: 10, 

located at the center of the shielding structure as illustrated in Figure 3, and prescribed boundary 

conditions at both right and top boundaries. For the forward boundary conditions, we consider unit 

isotropic incident distributions of radiation only in the first energy group, i.e., 𝑓𝑛 𝑔
𝑅 = 𝛿1,𝑔 cm−2s−1 and 
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𝑓𝑛 𝑔
𝑇 = 𝛿1,𝑔 cm−2s−1. Here, we apply the SGF†–CN method to the adjoint problem (6) on a coarse 

spatial grid composed of 100 × 100 nodes and the level symmetric 𝑆8 angular quadrature set to 

obtain the importance values to be substituted into the corresponding terms of Equation (7). 

Table 3 displays the results for the group leakage through the right and top boundaries (𝒥𝑅,𝑔
†  and 

𝒥𝑇,𝑔
†

, respectively) due to three distinct sources of particles. For all the cases, the results obtained by 

the adjoint technique as described in this paper do agree with the forward results up to the sixth 

decimal place. To obtain such results, we solved 20 adjoint 𝑆8 problems (10 groups × 2 adjoint 

boundary sources). 

 

Table 3: Group leakage estimation for Model–Problem No 2 (SGF†–CN method, spatial grid of 

100 ×  100 nodes, 𝑆8 level symmetric model). 

  𝑄 a 𝑓𝑅  b 𝑓𝑇 c Total (𝒥𝑅,𝑔
† /𝒥𝑇,𝑔

† ) 

𝑔 = 1 
𝒥𝑅,𝑔

†  d 1.353066e+00 1.006632e–01 1.523427e+00 
2.977156e+00 

𝒥𝑇,𝑔
†  e 1.353066e+00 1.523427e+00 1.006632e–01 

𝑔 = 2 
𝒥𝑅,𝑔

†  7.086908e–02 1.325590e–01 7.119480e–01 
9.153760e–01 

𝒥𝑇,𝑔
†  7.086908e–02 7.119480e–01 1.325590e–01 

𝑔 = 5 
𝒥𝑅,𝑔

†  7.192876e–03 2.257181e–01 3.040443e–01 
5.369552e–01 

𝒥𝑇,𝑔
†  7.192876e–03 3.040443e–01 2.257181e–01 

𝑔 = 9 
𝒥𝑅,𝑔

†  1.217799e–03 1.319387e–01 4.763744e–02 
1.807940e–01 

𝒥𝑇,𝑔
†  2.844500e–03 1.502993e–01 1.740780e–01 

𝑔 = 10 
𝒥𝑅,𝑔

†  1.192818e–03 1.239188e–01 3.187136e–02 
1.569830e–01 

𝒥𝑇,𝑔
†  1.217799e–03 4.763744e–02 1.319387e–01 

a  𝑄: Radiation source located at the center of the shielding structure 

b, c  𝑓𝑅 , 𝑓𝑇: Unit isotropic incident distributions of radiation at right and top boundaries 

d, e  𝒥𝑅,𝑔
†  , 𝒥𝑇,𝑔

†
: Group leakages through the right and top boundaries 
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 CONCLUSION 

 

The numerical solution to the adjoint transport equation is used in this work to estimate group 

leakage in 𝑆𝑁 fixed–source problems. The SGF† and SGF†–CN methods generate coarse–mesh 

solutions to numerically obtain the importance map distributions in slab– and 𝑋, 𝑌–geometry 𝑆𝑁 

problems, respectively.  We remark that the application of the present adjoint technique generated 

numerical results for the group leakage that agreed with the forward results up to the sixth decimal 

places for all the numerical experiments we performed.  The methodology presented here can be 

applied in the context of storage of radioactive sources and nuclear waste. Depending on the 

Radiation Safety Standards, shielding structures can be properly designed to guarantee the minimum 

required leakage values. We intend to apply this technique to inverse problems to estimate interior 

and/or boundary sources, given information about the group leakage through the boundaries of a 

given shielding structure. 
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