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ABSTRACT

Presently, ten industrial radiography facilities are operating in Bangladesh using X-ray or gamma-ray sources. Dur-
ing the last 5-year, 14 industrial radiography facilities were received individual monitoring service using thermolu-
minescent dosimeters (TLDs) from the Health Physics Division (HPD), Atomic Energy Centre, Dhaka under Bang-
ladesh Atomic Energy Commission. HPD is the only individual monitoring service provider in Bangladesh due to
external sources of ionizing radiation. The number of monitored industrial radiography facilities ranged from 7 to 14
while the number of worker ranged from 72 to 133 during the study period. The annual average effective doses
received from external radiation in industrial radiography workers and the distributions of the annual effective doses
by dose intervals are presented. The distribution of the occupational doses shows that the majority (about 75 %) of
workers received doses below 1 mSv for the last 5-years. Even though, very few workers (about 1%) received doses
higher than average annual dose limit (20 mSv), but no workers received doses higher than 100 mSv in 5 consecu-
tive years. The average annual effective dose of industrial radiography workers in Bangladesh is higher than the
corresponding values in Tanzania, Greece, Poland, Australia, UK and lower than in Bosnia and Herzegovina, USA
and Canada. However, the average annual effective dose is comparable to the corresponding values in China, Brazil,
Germany and India. The status and trends in occupational doses show that radiation protection situation at the ma-
jority of the workplace were satisfactory. In spite of that, additional measures are required due to big differences
observed in the maximum individual doses over the last 5-year.
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1. INTRODUCTION

Industrial radiography work is often carried out under difficult working conditions, such as in
confined spaces, in extreme cold or heat, or during the night. Working under such adverse condi-
tions might results in operational situations in which occupational radiation protection may be
compromised. Gamma radiography equipment utilizes a high activity sealed source housed in a
shielded exposure device. Improper management of high-activity sources can have severe deter-
ministic effects on individuals [1-7]. Based on the potential hazards of radioactive sources, a
system of categorization has been developed by the International Atomic Energy Agency
(TAEA) [8, 9]. Industrial radiography is one of the most common non-destructive testing (NDT)
methods worldwide and must be managed very safely and securely. Industrial radiographers are
considered one of the most critical group of radiation workers. The annual average effective dose
received by industrial radiographers is higher than that of other radiation workers [10]. With re-
gard to this fact and according to the Bangladesh Atomic Energy Regulatory (BAER) Act-2012
[11], any activity in this field shall be performed only after obtaining a proper licence. All appli-
cants must submit the necessary documents to the Bangladesh Atomic Energy Regulatory Au-
thority (BAERA) and ensure that they have the competence to carry out all activities with the
proper administrative and technical measures.

Any individual radiation monitoring program has at least two main aims. The first aim is to pro-
vide information on the adequacy of protection measures which is a key input for operational
decisions related to the optimization principle [12, 13]. Secondly, the individual monitoring pro-
grams aim is to demonstrate compliance with the relevant dose limits as required by the national
regulations [14] and recommendations of International Organizations [12, 13, 15]. In this con-
text, the annual effective dose to the occupationally exposed workers should not exceed 20 mSv
averaged over five consecutive years (100 mSv in 5-years), with a provision that the individual
dose does not exceed 50 mSv in any single year. Regular assessment of occupational radiation
exposures and the analysis of related trends are vital to examine changes that have taken place

over time due to regulatory operations or technological improvements. The objectives of this
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paper were to present the occupational radiation exposure of workers in industrial radiography

practices in Bangladesh and to evaluate the related trends over a period of 2010-2014.

2. MATERIALS AND METHODS

2.1 Description of TLDs and readout process

The thermoluminescent dosimeters (TLD) consists of LiF:Mg,Ti (TLD-100); phosphor has the
effective atomic number of 8.2, approximately equivalent to that of the soft tissue of a human
body. TLD chips 3 mm (1/8 inch) square encapsulated between two sheets of Teflon 0.003 inch-
es (10 mg/cm?) thick and mounted on an aluminum substrate. In this study, two-chip TLD cards
kept in a holder are issued for quarterly (3 months) basis to the radiation workers working in
industrial radiography facility (IRF). The worker wears the TLD on torso at the working time.
After using the cards of the stipulated time, IRF send back those used TLDs to the Health Phys-
ics Division (HPD), Atomic Energy Centre, Dhaka (AECD) under Bangladesh Atomic Energy
Commission (BAEC). The Harshaw TLD reader (model 4500) is used for measurement of TLD
dose of a wide varity of thermolumincence (TL) materials in many forms and sizes [16]. It has
two photomultiplier tube (PMT) in a sliding housing for manual reading of TLD cards and TL
chips for whole body, extremity and environmental dose monitoring purposes. Dual PMTs and
associated electronics enable it to read cards in two positions simultaneously. PMT consists of
photocathode that has the ability to convert the incident light into amplified current to give
measured output which is proportional to the number of generated photons and as a result pro-
portional to the absorbed dose. The Harshaw automatic TLD reader (model 6600 plus) has two
heating methods such as hot nitrogen gas and dry air [17]. The doses of the received TLDs are
measured in the TLD Reader by using hot nitrogen gas flow. The gas heating system uses a
stream of hot nitrogen at precisely controlled, linearly ramped temperatures to a maximum of
300°C. The hot gas heating under closed loop feedback control and the superior electronic design
produces consistent and repeatable glow curves. The annealed TLD again issue along with the

dose report to the relevant worker for use of next quarter cycle.



M.S. Rahman, et. Al. ® Braz. J. Rad. Sci. @ 2016 4

2.2 Equipments and dose evaluation procedures

The operational dose quantity used for the estimation of doses from external radiation is the per-
sonal dose equivalent Hy(10). Monitoring of radiation workers by the HPD, AECD under BAEC
using TLDs begin immediately after a facility is licensed to operate. HPD, AECD is the only
institute that provides dosimetry service for facilities that employ the use of ionizing radiation in
Bangladesh. LiF:Mg, Ti (TLD-100) dosimeters have been used throughout the period 2010-
2014. In the same period, two thermoluminescent dosimetry systems have been employed to
readout the TLDs. They are Harshaw Manual TLD Reader, Model 4500 [16] (from 2000 and still
running) and Automatic TLD Reader, Model 6600 Plus [17] (from June 2014) with manual sys-
tem of data transfer. Harshaw 6600 plus Automatic TLD Reader which is one of the most techni-
cally advanced dosimetry systems for whole body, extremity, neutron and environmental moni-
toring, is being used by the HPD, AECD. The system offers ‘one dosimetry solution’ by its abil-
ity to monitor whole body (beta, photon and neutron), extremity and environmental exposure
with a single dosimeter. It can take up to 200 dosimeters per cycle and also saves significant time
by virtue of its automatic calibration capabilities. It has a flat panel display and touch-screen
operation service and it exceeds International Electrotechnical Commission (IEC), International
Organization for Standardization (ISO) and American National Standards Institute Performance
requirements. The Harshaw TLD Readers are connected to an external personal computer (PC)
and are operated through installed menu-driven WinREMS software.

The Secondary Standard Dosimetry Laboratory (SSDL) has been available at BAEC since 1991,
which is traceable to the Primary Standard Dosimetry Laboratory (PSDL) of National Physical
Laboratory (NPL), UK. Prior to use, each TLD is exposed with 2 mSv dose from SSDL of
BAEC with respect to Hy (10), using a '*’Cs beam incident on a slab phantom of PMMA for
measurement of elemental correction coefficient (ECC). SSDL of BAEC has X-ray Unit (30 kV-
225 kV) for calibration of TLDs. The performance of BAEC SSDL is maintained according to
the requirements of the International Atomic Energy Agency (IAEA)/World Health Organization
(WHO) network of SSDLs. Therefore, the evaluated doses are traceable to the international
measurement system. Furthermore, the personal monitoring laboratory regularly participates in
inter-laboratory dose comparison programmes as organized by IAEA. In the latest comparison,

adequate performance was achieved according to the standards trumpet curve criteria [18, 19].
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TLDs output read by Harshaw TLD reader is the charges produced by electrons due to the an-
nealing process. To convert the output readings of TLDs from charge (nC) to absorbed dose
(Gy); the following equations are used:

equivalent dose
absorbed dose = (1)
quality factor

The time between irradiation and readout should be the same to keep same fading from one cali-

bration to another for all TLDs. The calibration factor (fcalibration) 18 defined as follows:

ionization chamber(mGy) (2)

TLD

fcalibmtion =
reading(nC)

Absorbed dose due to irradiation is obtained after background subtraction by the following equa-
tion:

Dy, =D, -BG (3)

Then absorbed dose is obtained for each TLD by the following equation:

mG
Dy, ,(mGy) = £, (n—y) xTLD

C reading

(nC) (4)

Dose reporting is performed on a quarterly basis. For all individual doses, the minimum detec-
tion level (MDL) is 0.05 mSv for 3 months for two TLD systems after background subtraction.
This value (MDL) is taken as dose recording level. The workers who received doses less than
MDL are regarded as non-exposed. All doses that exceed the level of 5 mSv in a monitoring pe-
riod (3 months) are always investigated. The dose record is accordingly amended after receiving
a written explanation with reasons of high dose received by the workers from the Radiation Pro-
tection Officer/Head of the Institution. The database, therefore, includes only actual doses re-
ceived by the radiation workers. Table 1 shows the number of monitored workers for the years

2010-2014.

2.3 Monitored and exposed workers
The dosimetry service at HPD uses a personal dosimeter system with a MDL of 0.05 mSv for a
three month monitoring period after subtracting background radiation. Exposed workers are

workers who may be exposed to doses exceeding 0.05 mSv. The workers who have effective
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doses less than MDL are considered as non-exposed. Therefore, the doses less than MDL are

recorded as zero. All values of Hy(10) are recorded and reported as the effective dose.

Table 1: Number of monitored workers in industrial radiography practices for the years 2010-
2014 (enclosed in the brackets in the column are the number of institutions).

Type of practice 2010 2011 2012 2013 2014
/Year
Industrial radiog-
raphy 72 (7) 84(9)  1290(11) 133(11)  130(12)

2.4. Data Analysis

In this study, four quantities recommended by UNSCEAR [20] were used to analyze individual
doses for the years 2010-2014. They include the annual collective effective dose, the average
annual effective dose, the individual dose distribution ratio and the annual collective effective
dose distribution ratio. In addition, the minimum and the maximum values of the annual individ-

ual effective doses were analyzed to complement the average annual effective doses.

2.4.1. Annual collective effective dose (S)
The annual collective effective dose (S) was obtained according to the following equation given

by UNSCEAR [20]:
S=2E (5)

Where E; is the annual effective dose received by the i worker and N is the total number of
workers monitored. The parameter S, gives an estimate of the impact of particular practice on the

population in given time frame.

2.4.2. Average annual effective dose

The average annual effective dose, £ was obtained from the ratio S/N, where the meaning of

symbols are the same as in equation (5).
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2.4.3. The individual dose distribution ratio

The individual dose distribution ratio, NRg was obtained according to the following equation
[20]:

:N(>E)

NRy ==

(6)

Where N(>E) is the number of workers receiving annual dose exceeding E mSv. In this study,
NRE was analysed for values of E of 1, 5, 10 and 15 mSv. The parameter NREg provides an indi-

cation of the fraction of workers exposed to higher levels of individual doses.
2.4.4. The annual collective dose distribution ratio

The annual collective dose distribution ratio, SRg was obtained according to the following equa-
tion [20]:

_ S>E)

SRy =

(7)

Where S (>E) is the annual collective dose delivered at an annual dose exceeding E mSv. In this
study, SRg was analysed for values of E of 1, 5, 10 and 15 mSv. The parameter SRg, provides an
indication of the fraction of the collective dose received by workers exposed to higher levels of

individual doses.

3. RESULTS AND DISCUSSION

3.1. Annual average effective dose and collective effective dose

The annual average effective dose and annual collective effective dose did not follow a particular
trend between the 5-year periods. The annual average doses of the monitored workers were
ranged 1.12-1.74 mSv during the period 2010-2014 as shown in Figure 1. The average annual

effective dose of the monitored workers for the last 5-year period was 1.40 mSv which is compa-
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rable to the worldwide average annual effective dose of 1.50 mSv during 1995-1999, 2000-2002
periods [21]. The lowest annual average effective dose was 1.12 mSv in 2011. The observation
may be due to decrease in workload or adherence to proper radiation protection protocols in
2011. The sudden rise in annual average effective dose in 2012 and 2013 could be due to im-
proper radiation protection measures resulting in unintended over exposure of certain TLDs [22].
The decrease in average annual effective dose after 2013 is probably due to the formulation of
independent regulatory Authority (BAERA) under the BAER Act-2012 [11] and proper regulato-
ry control of the industrial radiography facilities. The annual maximum individual effective dos-
es were 23.65, 21.71, 54.14, 55.37 and 12.49 mSv in 2010, 2011, 2012, 2013 and 2014 respec-
tively as shown in Figure 2. It is the policy of HPD, BAEC dosimetry service to write to em-
ployers if any recorded dose exceeds 5 mSv for a monitoring period of 3 months. The employer
is informed immediately of the dose and is requested to investigate the incident and to report the
findings of such investigation to the HPD, BAEC. It is found that most of these exposures were
due to prolonged working with radioactive sources at on-sites or mistakes by radiation workers.
X-rays and gamma-ray sources such as '°’Ir are widely used for industrial radiography in Bang-
ladesh. Most of these workers might not have proper training on radiation protection and their
high exposure dose is thought to be the result of improper handling of the radioactive sources
during their daily work. As can be seen from Figure 3, the majority of workers (75%) received
doses less than 1 mSv during the entire study period. This means that the distributions are left
skewed towards low doses in accordance with the distribution pattern described by UNSCEAR
[23], the implication of which is that most occupationally exposed workers received very low
doses with only a small number receiving high doses. During the period 2010-2014, two workers
received doses higher than 50 mSv (54.14 mSv in 2012 and 55.37 mSv in 2013), while 4 work-
ers received doses higher than annual average permissible dose limit (20 mSv) (23.65 mSv in
2010, 21.71 mSv in 2011, 36.44 mSv in 2012 and 36.58 mSv in 2013). Currivan and Koczynski
[24, 25] investigated that industrial radiography workers received higher doses than their coun-
terparts in the medical group is a common phenomenon. Based on this observation, as in most
countries, industrial workers are the ones at risk and therefore rigorous surveillance has to be

maintained in order to reduce the doses to this group of workers. The surveillance programme
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should include an analysis of worker dose records to determine whether the same set of workers

always receives the higher doses.

Figure 1: Trends of annual collective dose and average dose of the workers in industrial radiog-

raphy practices.
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Figure 3: Number of workers average annual effective doses interval in industrial radiography
practices during the period 2010-2014.
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The comparisons with other countries data (Table-4) in literature show varying results. For ex-
ample, in Tanzania, average annual effective dose for the years 1996-2010 was 0.59 mSv. In
Greece, the average annual effective dose for the years 1996-2003 was 0.56 mSv, while in Chi-
na, average annual effective dose for the years 1996-2000 was 1.18 mSv. In Bosnia and Herze-
govina, average annual effective dose for the years 2004-2008 was 3.4 mSv, while in USA, aver-
age annual effective dose for the years 2000-2002 was 5.36 mSv. Therefore the average annual
occupational exposure in Bangladesh is largely within the ranges of exposure situations that are
found in other countries.

Considering the global condition, the worldwide average effective dose for monitored workers is
1.50 mSv during 1995-1999 and 2000-2002 [21]. The results from this work show that for the
years 2010-2014, the average annual effective dose for monitored workers was 1.40 mSv. There-
fore the average annual effective dose for industrial radiography workers in Bangladesh is higher
than the corresponding values in Tanzania, Greece, Poland, Australia, UK and lower than in
Bosnia and Herzegovina, USA and Canada. The average annual effective dose for industrial ra-
diography workers in Bangladesh is comparable to the corresponding values in China, Brazil,
Germany and India [30, 20]. It is to be noted that the doses for these countries correspond to dif-
ferent time periods. The variations can be accounted for by the differences in the workloads of

practices, the state of the technology or the understanding level on radiation protection.
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3.2. Individual and collective dose distribution ratio

The individual dose distribution ratios for the period 2010-2014 were presented in Table 2. It is
seen that very few individuals were exposed to doses exceeding 10 and 15 mSv. Furthermore,
less than 3 % of the monitored workers received doses above 10 mSv. Table 3 presents the re-

sults of the collective dose distribution ratio for the period 2010-2014.

Table 2: The individual dose distribution ratio for the period 2010-2014.

Annual Individual dose distribution ratio

individual

individua 2010 2011 2012 2013 2014
dose ex-

ceeding

(mSv)

1 0.208 0.167 0.232 0.256 0.307
5 0.069 0.071 0.054 0.060 0.069
10 0.027 0.024 0.023 0.030 0.015
15 0.014 0.012 0.023 0.022 0.00

Table 3: Collective dose distribution ratio for the period 2010-2014.

Annual Collective dose distribution ratio
individual

2010 2011 2012 2013 2014
dose ex-
ceeding
(mSv)
1 0.629 0.701 0.688 0.718 0.667
5 0.522 0.594 0.583 0.605 0.425
10 0.363 0.381 0.492 0.510 0.151

15 0.251 0.231 0.492 0.464 0.00




Table 4: Comparison of annual average effective dose of monitored and exposed workers with

other countries.
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Country Annual average effective dose (mSv)
Period Monitored Exposed Reference
Worker Worker
Tanzania 1996-2010 0.59 - MUHOGORA, W. E. et al [26]
Greece 1996-2003 0.56 - Economides, S. et al [27]
Turkey 1995-1999 0.30 - Gunduz, H. et al [28]
2003 1.35 - Zeyrek, C.T. et al [29]
China 1986-1990 1.92 - TIAN, Y. et al [30]
1991-1995 1.43 -
1996-2000 1.18 -
Bosnia 1999-2003 3.0 5.8 BASIC, B. et al [31]
And Herzego- 2004-2008 34 4.1
vina
Poland 1999 0.80 - KOCZYNSKI, A. et al [25]
2011 0.48 - WASEK, M. et al [32]
USA 1995-1999 4.13 5.51 UNSCEAR 2008 [21]
2000-2002 5.36 6.40
Argentina 1990-1994 0.83 2.90 UNSCEAR 2000 [20]
Australia 1990-1994 0.19 0.46 UNSCEAR 2000 [20]
Brazil 1990-1994 1.40 3.13 UNSCEAR 2000 [20]
Bulgaria 1990-1994 0.87 1.63 UNSCEAR 2000 [20]
Canada 1990-1994 3.39 5.82 UNSCEAR 2000 [20]
Germany 1990-1994 1.41 4.29 UNSCEAR 2000 [20]
India 1990-1994 1.84 3.49 UNSCEAR 2000 [20]
Japan 1990-1994 0.83 2.57 UNSCEAR 2000 [20]
UK 1990-1994 0.76 1.55 UNSCEAR 2000 [20]
Bangladesh ~ 2010-2014 1.40 243 This study
Worldwide 1995-1999 1.50 - UNSCEAR 2008 [21]
average
2000-2002 1.50 -
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4. CONCLUSION

The average annual effective dose is comparable to the worldwide average annual effective dose
as quoted in the literature. Even though majority of workers received very low doses, but a very
few workers received doses above annual average dose limit. Therefore, a close monitoring and
control of the activities of this group of workers must be ensured. The following may be some of
the reasons for high doses in any industrial radiography institution.
(1) Employ of workers who are not qualified or trained. Such workers may not know the im-
plication of exposing themselves to unnecessary high radiation doses.
(2) Inadequate performance of radiation generating equipments due to ageing and lack of
maintenance.
(3) Insufficient number of workers in the different institutions leading to workers high work-
load.
From this observation, it can be concluded that courses in radiation protection particularly the
safe operation of the radiation generating equipments and radioactive sources are strongly rec-
ommended to those workers who have lack of proper training. Finally, workers should pay more
attention to radiation protection procedures and guidelines in every exposure to keep the doses

below the annual average permissible limit rather than maximum allowable dose in a year.
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