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Abstract: In this paper, a comparative analysis of numerical results of the neutron 
transport and diffusion theories for steady-state and transient multigroup problems is 
presented. The neutron transport equation is known as the one that best describes the 
behavior of the neutron population in a nuclear reactor. However, due to the difficulty of 
working with its complete form, other models are considered as approximations to this 
equation. One such approximation is the neutron diffusion equation, which uses the 
Fick's Law. It is well known, however, that the diffusion model may not work well under 
specific conditions. The objective of this work is to establish a quantitative comparison 
of numerical results obtained for the K dominant eigenvalue and for the scalar fluxes 
from the two theories and to analyze the influence of the model on the results. 
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Uma validação numérica entre as 
teorias de transporte e difusão de 
nêutrons para um problema da 
cinética espacial 
Resumo: Neste artigo é apresentada uma análise comparativa dos resultados numéricos 
das teorias de transporte e difusão de nêutrons para problemas multigrupo em estado 
estacionário e transiente. A equação de transporte de nêutrons é conhecida como a que 
melhor descreve o comportamento da população de nêutrons em um reator nuclear. 
Entretanto, devido à dificuldade de trabalhar com sua forma completa, outros modelos 
são considerados como aproximações desta equação. Uma dessas aproximações é a 
equação de difusão de nêutrons, que usa a Lei de Fick. É bem sabido, contudo, que o 
modelo de difusão pode não funcionar bem em condições específicas. O objetivo deste 
trabalho é estabelecer uma comparação quantitativa dos resultados numéricos obtidos 
para o autovalor dominante K e para os fluxos escalares nas duas teorias e analisar a 
influência do modelo nos resultados. 

Palavras-chave: teoria de transporte de nêutrons, teoria de difusão de nêutrons, análise 
comparativa, autovalor dominante K. 
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1. INTRODUCTION  

One of the fundamental requirements for the design of nuclear reactors is to 

understand the behavior of the neutron distribution, which determines the safe operation of 

such systems. Consequently, one of the central challenges in reactor research is to predict 

this distribution in detail.  

This problem is primarily addressed by two theories: neutron transport theory and 

neutron diffusion theory [1, 2, 3]. Both theories study the migration of neutrons in both 

multiplying and non-multiplying media and obtain the flux distribution in space, time, and 

energy. It requires knowledge of the characteristics, properties, and microscopic and 

macroscopic quantities of the physical system, such as cross-sections, material composition, 

geometry, etc.  

The most comprehensive equation that models neutron transport is the linear 

Boltzmann equation, deduced from the principle of conservation (or balance) of the number 

of neutrons in a convex volume element. The transport equation, developed by Boltzmann, 

can be used to describe the distribution in space, energy, propagation direction (angle), and 

time of neutrons within the core of a nuclear reactor. This distribution governs the behavior 

of a nuclear reactor; however, the integro-differential equation involves three position 

variables, two angular variables, one energy variable, and one time variable. It is worth 

mentioning that it is challenging to solve analytically due to the complexity of the functions 

and the number of independent variables that define the problem [4]. Therefore, finding 

analytical solutions to the transport equation is only feasible if the system is simplified or 

idealized in such a way that a closed-form mathematical solution can be obtained. In the 

steady-state regime, the flux is considered independent of time. Dealing with spatial 
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dependence in arbitrary geometry is difficult. What is usually done is to consider an idealized 

model in slab geometry, and thus, the parameters will depend only on one spatial coordinate. 

Additionally, it is easier to derive the transport equation than to solve it. However, 

under certain conditions, they are treated in the most appropriate way to obtain an exact 

solution. This simplified version of the transport theory is called diffusion theory. Although 

the conditions required for the validity of diffusion theory are rarely met in practical reactor 

problems, its use usually results in a good approximation to the exact solution of the 

transport equation, and due to its simplicity, diffusion theory is commonly used in global 

reactor problems [5].  

To construct the mathematical model of neutron diffusion, i.e., the neutron diffusion 

equation, we assume that the angular flux has a weak dependence on angle, meaning it 

exhibits a linear dependence. This approximation is not satisfactory near boundaries or 

regions where material properties change drastically within distances comparable to the mean 

free path of neutrons. It is also unreasonable in the vicinity of localized sources and in 

strongly absorbing media.  

Typically, when studying neutron transport in regions of the domain that are several 

mean free paths away from sources or boundaries in weakly absorbing media, neutron flux 

varies little with space. Therefore, the neutron diffusion theory serves as a suitable 

approximation for the physical phenomenon of transport. 

Although there is much literature regarding the differences between theories, to our 

knowledge, this type of numerical comparison between them is very scarce and seldom 

addressed through cases in the literature. 

It is known that, to make a viable approximation between the neutron current and the 

scalar neutron flux, simplifications are made to find the classical constitutive relation (Fick's 

law), in which the neutron current term needs to satisfy some simplifications according to 

[2]: energy separability throughout the equation; isotropy in the source term; weak angular 
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flux dependence with direction and temporal variation of current density much slower than 

collision rate. These simplifications allow approximating the neutron current term with the 

classical Fick's law. 

In this sense, a pathway to a better approximation of neutron diffusion theory would 

be to propose alterations to Fick's law. The starting point would be to analyze the 

differences in theories for scenarios of reactor power variation over time and, therefore, to 

analyze the dynamics of a nuclear reactor, comparing the neutron kinetics equation with 

the transport equation. One of the questions that arises is what possible modifications or 

extensions of the kinetics equation could describe a more realistic form of overall temporal 

evolution of scalar flux. 

A starting point to answer this is what could be the precise correlations for minimal 

error compared to transport results. In this sense, comparisons between theories are necessary 

at certain crucial points of the reactor, such as near boundaries and material interface regions, 

where large variations in scalar flux are known to occur over a short time interval. 

In this work we will propose a quantitative comparison of the two models: transport 

and diffusion. The analysis is carried out on solutions to a reactor physics problem in slab 

geometry, a one-dimensional and heterogeneous medium composed of 7 regions, 

considering the kinetic model of the neutron diffusion and transport equation. The kinetic 

equations of the neutron diffusion theory were solved using a nodal formulation along with 

the Backward Euler method and the kinetic equations of the neutron transport theory were 

solved using time-dependent discrete ordinates code (TDA) [6]. 
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2. FORMULATION AND METHODS 

The spatial kinetic equations in neutron diffusion theory for the one-dimensional case 

in slab geometry, in a domain Ω contained in ℝ, are written as  

1

𝑣𝑔

𝜕𝜙𝑔(𝑥, 𝑡)

𝜕𝑡
= −

𝜕

𝜕𝑥
(−𝐷𝑔(𝑥, 𝑡)

𝜕𝜙𝑔(𝑥, 𝑡)

𝜕𝑥
) − 𝛴𝑅𝑔(𝑥, 𝑡)𝜙𝑔(𝑥, 𝑡) 

+(1 − 𝛽)𝜒𝑔
𝑝

∑ 𝜈𝑔′𝛴𝑓𝑔′(𝑥, 𝑡)𝜙𝑔′(𝑥, 𝑡)

𝐺

𝑔′=1

 

                                             + ∑ 𝛴𝑠𝑔′𝑔(𝑥, 𝑡)𝜙𝑔′(𝑥, 𝑡)

𝐺

𝑔′=1;𝑔≠𝑔′

+ 𝜒𝑔
𝑑 ∑ 𝜆𝑝𝐶𝑝(𝑥, 𝑡),

𝑃

𝑝=1

            (1) 

 

𝜕𝐶𝑝(𝑥, 𝑡)

𝜕𝑡
= −𝜆𝑝𝐶𝑝(𝑥, 𝑡) + 𝛽𝑝 ∑ 𝜈𝑔𝛴𝑓𝑔(𝑥, 𝑡)𝜙𝑔(𝑥, 𝑡)

𝐺

𝑔=1

, 

 

where 𝑥 ∊ Ω,  𝑡 ∊ [𝑡0, ∞], 𝑡0 is the initial time, 𝑔 = 1: 𝐺 are the neutron energy groups and 

𝑝 = 1: 𝑃 are the delayed neutron precursors families. For each energy group 𝑔: 𝜙𝑔(𝑥, 𝑡) is 

the neutron scalar flux in [𝑐𝑚−2 𝑠−1], 𝑣𝑔 is the neutron speed in [𝑐𝑚  𝑠−1], 𝐷𝑔 is the 

diffusion coefficient in [𝑐𝑚], 𝛴𝑅𝑔 is the removal cross-section in [𝑐𝑚−1], 𝛽 is the total 

fraction of delayed neutrons, 𝜒𝑔
𝑝
 is the prompt fission spectrum, 𝜈𝑔 is the average number 

of neutrons emitted by fission, 𝛴𝑓𝑔 is the fission cross-section in [𝑐𝑚−1],  𝛴𝑠𝑔′𝑔 is the 

scattering cross-section from energy group 𝑔′ to 𝑔 in [𝑐𝑚−1],  𝜒𝑔
𝑑 is the delayed fission 

spectrum. For each precursors family 𝑝: 𝐶𝑝(𝑥, 𝑡) is the delayed neutron precursor 

concentration in [𝑐𝑚−3], 𝛽𝑝 is the delayed neutron fraction and 𝜆𝑝 is the delayed neutron 
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decay constant in [𝑠−1]. In addition to these parameters, 𝛽 is the delayed neutron fraction, 

that is defined by 

                                                             𝛽 = ∑ 𝛽𝑝  .                                                                      (2)

𝑃

𝑝=1

 

The most common boundary conditions for Eqs. (1) are of the type: Dirichlet, 

Neumann or Robin, which are written in a general form as 

                                                     𝑎𝑔𝜙𝑔(𝑥, 𝑡) + 𝑏𝑔

𝜕𝜙𝑔(𝑥, 𝑡) 

𝜕𝑥
= 0                                           (3) 

where 𝑥 ∊ 𝜕Ω and  |𝑎𝑔|+|𝑏𝑔| < 0 for 𝑎𝑔 and 𝑏𝑔 real constants. The initial conditions for 

the spatial kinetics problem are  

                   𝜙𝑔(𝑥, 0) = 𝜙𝑔0(𝑥) 𝑎𝑛𝑑  𝐶𝑝(𝑥, 0) =
𝛽𝑝

𝜆𝑝
∑ 𝜈𝑔𝛴𝑓𝑔(𝑥, 0)𝜙𝑔0(𝑥)                    (4)

𝐺

𝑔=1

 

where 𝑥 ∊ Ω and 𝜙𝑔0(𝑥) are known neutron fluxes (steady state solution). 

2.1. Spatial variable 

The treatment of the spatial variable that we propose in this section will be applied to 

both the stationary problem and the kinetic problem. This treatment consists of a nodal 

integration technique along with approximations of the current densities at the interfaces, as 

present in REF. [5].  

The nodal integration technique consists in dividing the domain into N nodes with 

constant properties (homogeneous medium). Then in each node (𝑖) of dimension 𝛥𝑥(𝑖), 𝑥 ∈

[𝑥𝑖−1, 𝑥𝑖], we integrate Eqs. (1) for all 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖] and we divide by 𝛥𝑥(𝑖). So, we obtain 

the average spatial variable in each node: average neutron flux, 𝜙𝑔
(𝑖)(𝑡), and average precursor 

concentration,  𝐶𝑝
(𝑖)(𝑡), as  
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                                                  𝜙𝑔
(𝑖)(𝑡) =

1

𝛥𝑥(𝑖)
∫ 𝜙𝑔

(𝑖)(𝑥, 𝑡)𝑑𝑥                                           (5)
𝑥𝑖

𝑥𝑖−1

 

and 

                                                 𝐶𝑝
(𝑖)(𝑡) =

1

𝛥𝑥(𝑖)
∫ 𝐶𝑝

(𝑖)
𝑥𝑖

𝑥𝑖−1

(𝑥, 𝑡)𝑑𝑥.                                           (6) 

In addition, we are still left with the neutron current densities at the node interfaces 

                                                  𝐽𝑔
(𝑖)(𝑥, 𝑡) = −𝐷𝑔

(𝑖)(𝑡)
𝜕

𝜕𝑥
𝜙𝑔

(𝑖)
.                                                   (7) 

This way, we need to introduce auxiliary equations to solve this problem. Then, we 

propose to approximate the current densities as a function of the average neutron fluxes 

based on study presented in REF. [5]. In this way, we write the current densities at the 

interfaces of node (𝑖) as 

 𝐽𝑔
(𝑖)(𝑥𝑖 , 𝑡) ≃ −

2 (𝐷𝑔
(𝑖+1)(𝑡)𝛥𝑥(𝑖+1) + 𝐷𝑔

(𝑖)(𝑡)𝛥𝑥(𝑖))

(𝛥𝑥(𝑖+1) + 𝛥𝑥(𝑖))2
(𝜙𝑔

(𝑖+1)(𝑡) − 𝜙𝑔
(𝑖)(𝑡))                 (8) 

and 

𝐽𝑔
(𝑖)(𝑥𝑖−1, 𝑡) ≃ −

2 (𝐷𝑔
(𝑖)(𝑡)𝛥𝑥(𝑖) + 𝐷𝑔

(𝑖−1)(𝑡)𝛥𝑥(𝑖−1))

(𝛥𝑥(𝑖) + 𝛥𝑥(𝑖−1))2
(𝜙𝑔

(𝑖)(𝑡) − 𝜙𝑔
(𝑖−1)(𝑡)).             (9) 

Ultimately, when we substitute the approximations of the current densities, we obtain 

a differential equations system in the temporal variable. For details see REF. [5]. 

 

2.2. Time variable 

In this subsection, we propose to approach the time-dependent differential equations 

system in two decoupled subsystems: one for the neutron fluxes equations and the other for 

the delayed neutron precursor concentrations equations. Furthermore, an iterative process 
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between the two subsystems is applied. This treatment is necessary due to the presence of 

precursor concentrations in the source terms of neutron fluxes equations and conversely. In 

this way, we consider two subsystems in the form 

                                            
𝑑

𝑑𝑡
𝜁𝑝

[𝑠](𝑡) = −𝜆𝑝𝜁𝑝
[𝑠](𝑡) + 𝛽𝑝𝑆𝑝𝑟𝑒

[𝑠−1](𝑡)                                     (10) 

and 

                                             
𝑑

𝑑𝑡
𝛷[𝑠](𝑡) = 𝑉𝑀(𝑡)𝛷[𝑠](𝑡) + 𝑉𝑆𝑓𝑙𝑢

[𝑠] (𝑡),                                  (11) 

where 𝜁
𝑝

[𝑠](𝑡) is the 𝑁 × 1 vector of the average precursor concentration of the family 𝑝. 

𝑆𝑝𝑟𝑒(𝑡) is the 𝑁 × 1 source vector of the delayed neutron precursor concentration 

equations, where each component is defined as 

                                                          ∑ 𝜈𝑔𝛴𝑔
(𝑖)

𝜙𝑔
(𝑖)(𝑡) .                                                            (12) 

𝐺

𝑔=1

 

Furthermore, 𝑉 is the 𝑁𝐺 × 𝑁𝐺 blocks diagonal matrix, which contains the neutron 

velocities, 𝜙(𝑡) is 𝐺𝑁 × 1 vector of the average neutron fluxes. 𝑀(𝑡) is a 𝑁𝐺 × 𝑁𝐺 matrix 

with five diagonal blocks and 𝑆𝑓𝑙𝑢(𝑡) is the 𝐺𝑁 × 1 vector source vector for the differential 

subsystem of neutron fluxes, where each component is defined as 

                                                         𝜒𝑔
𝑑 ∑ 𝜆𝑝

𝑃

𝑝=1

𝐶𝑝
(𝑖)(𝑡) .                                                             (13) 

The REF. [5] presents the detailed derivation and a comparative study between different 

forms of solution for the Eqs. (10) and (11). This study concluded that in most cases 

analytical treatment with constant sources for Eq. (10) and numerical treatment (Backward 

Euler method) for Eq. (11) is the best choice to get accurate results with low computational 

cost. 
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3. NUMERICAL  RESULTS AND DISCUSSIONS 

In this section, the motivation is to verify the influence of the diffusion approximation 

in global calculations in reactor physics. For this, we make a comparison between the 

numerical results obtained through the theory of neutron transport and the theory of neutron 

diffusion for the problems of criticality and spatial kinetics. In this context, we investigate 

Test Problem 16-A1, REF. [6], which is a problem defined in a medium with isotropic 

scattering and azimuthal symmetry, which consists of a heterogeneous medium with seven 

regions as shown in Figure 1 and Table 1. 

Figure 1: Geometry of the Test Problem 16-A1. 

 
 

Together with the dimensions of the seven regions, in Table 1, we present a proposal 

for the subdivision of each region, as presented by REF. [6]. This subdivision aims to 

establish an initial pattern for the mesh generation. 

Table 1 : Test Problem 16-A1 spatial domain. 

Region Dimension (cm) Node numbers 

1 40 20 

2 47.374 24 

3 9 5 

4 34 16 

5 9 5 

6 47.374 24 

7 40 20 

Source : American Nuclear Society (1985) [6]. 

 

Regions 1 and 7 are composed from the same coating material (Material 1), Regions 

2, 4 and 6 are composed from the same combustible material (Material 2) and Regions 3 and 
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5 are a mixture of sodium and the material from the bars control (Material 3). The core 

parameters of each material are described in Table 2.  

Table 2 : Parameters of Test Problem 16-A1. 

Material g 𝝂𝒈𝜮𝒇𝒈(𝒄𝒎−𝟏) 𝜮𝒕𝒈(𝒄𝒎−𝟏) 𝜮𝒔𝒈𝒈(𝒄𝒎−𝟏) 𝜮𝒔𝒈𝒈′(𝒄𝒎−𝟏) 

1 1 8.34410 × 10-4 2.4110 × 10-1 2.33644 × 10-1 3.5980 × 10-3 

1 2 3.27760 × 10-4 4.1720 × 10-1 4.07004 × 10-1 0.0 

2 1 7.45180 × 10-3 1.8490 × 10-1 1.77711 × 10-1 2.0850 × 10-3 

2 2 1.10612 × 10-2 3.6680 × 10-1 3.53721 × 10-1 0.0 

3 1 0.0 9.4320 × 10-2 8.57100 × 10-2 1.7168 × 10-3 

3 2 0.0 1.8762 × 10-1 1.71310 × 10-1 0.0 

𝜒1 =1.0 𝜒2 =0.0     

Source: American Nuclear Society (1985) [6]. 

 

Table 2 presents the macroscopic cross-sections used in the neutron transport theory, 

however, to apply them in the diffusion theory we need the diffusion coefficients. Since this 

is an isotropic scattering problem, we define the diffusion coefficient as 

                                                     𝐷𝑔 =
1

3𝛴𝑡𝑔
  .                                                                           (14) 

 

In addition, we also need the removal cross-section, determined in the form 

                                      𝛴𝑅𝑔 = 𝛴𝑡𝑔 − 𝛴𝑠𝑔𝑔 .                                                              (15) 

            

3.1. Steady state problem 

Our results for the K dominant eigenvalue in the steady state problem are generated 

by the Secant method proposed in REF. [7], in addition to the approximations of the current 

densities at the interfaces that we introduced in Section 2.1 in this work. The results via 

neutron transport theory that we adopted for comparison are those presented in REF. [6], 
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which was provided by the Argonne National Laboratory. Paragraph 16-A1 Problem Test, 

REF. [6] presents the results obtained through two codes:  

• 16-A1-1 (TIMEX code) obtained K = 1.000198 

• 16-A1-2 (TDA code) obtained K = 1.000000 

where the TDA code treats the values of the scalar fluxes as average values of the mesh 

interval and the TIMEX code values in the limits of the mesh intervals. 

For comparison purposes, we also adopted the dominant eigenvalues calculated using 

the diffusion equation by REF. [8]. Even though his thesis is more specifically for transport 

problems, he presents some results based on diffusion. Banfield proposes a semi-implicit 

direct kinetics (SIDK) method developed for the neutron transport equation. This method 

is a modification of the diffusion kinetics method developed by REF. [9]. In REF. [8] says 

that the only differences in the derivation are that the scattering term is included in the 

leakage operator and that the derivation is done for a generic number of energy groups. 

Therefore, as it does not show how spatial discretization is performed, we believe that it is 

the same as REF. [9], which is based on the Legendre polynomial expansion. 

 

Table 3 : Results for the dominant eigenvalue K for Test Problem 16-A1 via diffusion. 

Node REF. [8]  Secant method [7] 

numbers K error Timex error TDA  K error Timex error TDA 

114 0.991826 0.00837 0.00817  0.99389 0.00631 0.00611 

228 0.992923 0.00727 0.00708  0.99385 0.00635 0.00615 

456 0.993431 0.00677 0.00657  0.99390 0.00630 0.00610 

912 0.993675 0.00652 0.00633  0.99394 0.00626 0.00606 

 

The first aspect that we highlight in Table 3 is the difference in the state of criticality 

obtained via transport and via diffusion. In transport, the result obtained by the TIMEX 
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code indicated a core in a supercritical state (K = 1.000198) and the TDA code a critical state 

(K = 1.000000). However, in diffusion, the results indicate a subcritical state, both in REF. 

[8] and in our results. When we take the results obtained via transport as a reference, we 

observe that our methodology produced closer results (lower relative errors) than the 

Banfield results. Finally, when comparing the results obtained via diffusion, we noticed an 

agreement of up to three significant digits, however, for the meshes presented, our results 

set one digit more than REF. [8]. 

The graphs in Figures 2 and 3 bring a comparison between the scalar fluxes 

determined by the transport theory and by the diffusion theory. As we work with average 

scalar flux, we adopted as reference the fluxes obtained by the TDA code [6]. Diffusion 

graphs are obtained with a mesh of 912 nodes. 

 

Figure 2: Illustration of the average fast neutron fluxes of Test Problem 16-A1. 
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Figure 3: Illustration of the average thermal neutron fluxes of Test Problem 16-A1. 

 

In Figures 4 and 5, we present the error between the fluxes determined by transport 

and diffusion. For a better visualization, in the figures we added the limits of each material 

region. The absolute error is determined by subtracting the results for transport-determined 

fluxes by the diffusion determined fluxes. 

Figure 4: Illustration of the absolute error of average fast neutron fluxes of Test Problem 16-A1. 

 

 

 

Figure 5: Illustration of the absolute error of average thermal neutron fluxes of Test Problem 16-A1. 
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In Figures 4 and 5, the error presented by the diffusion approximation was observed, in 

particular in the limits of the materials and in the strongly absorbing materials (Regions 3 and 5). 

3.2. Spatial kinetics problem 

The Test Problem 16-A1 of ANL Benchmark is a one-dimensional fast reactor 

benchmark. This is an excellent problem to examine the impact of transport versus 

diffusion solutions, as it is one of the few transport-based spatial kinetics benchmarks 

available in the literature [8].  

At time t = 0s, an instantaneous disturbance is made to the densities of the materials 

in Regions 2 and 6. The change consists of a 5% increase in density in Region 2 and a 5% 

decrease in Region 6, that is, a change in the number of nuclei per unit volume. This 

perturbation results in a change in the cross-sections of Regions 2 and 6 in Table 2. We 

present the other parameters for the kinetic problem in Table 4. 

Table 4 : Parameters for kinetic of Test Problem 16-A1. 

i 𝛽𝒊 𝜆𝒊 𝝌𝒊
𝒅 𝒗𝒊 

1 0.810 × 10-4 0.0129 1.0 109/1.851 

2 6.870 × 10-4 0.0311 0.0 108/1.088 

3 6.120 × 10-4 0.1340   

4 1.138 × 10-3 0.3310   

5 5.120 × 10-4 1.2600   

6 1.700 × 10-4 3.2100   

Source : American Nuclear Society (1985) [6]. 

 

In Figures 6 and 7, the graphs refer to the SIDK method in REF. [8] were extracted 

from the figures presented by the author through the App WebPlotDigitizer. On the other 

hand, the graphs refer to the solution via transport (TDA code) are obtained by plotting the 

tabulated results presented in REF. [6]. 
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Figure 6: Illustration of the average fast neutron fluxes of Test Problem 16-A1. 

 

 

Figure 7: Illustration of the average thermal neutron fluxes of Test Problem 16-A1. 

 
 

In the graphs in Figures 6 and 7 we notice that both results (ours and REF. [8]) 

obtained via diffusion theory have a small upward variation in relation to the results obtained 

via transport theory. Furthermore, we observed that our results for the fluxes at t = 0.01s 

are in better agreement with the ones to the fluxes obtained by the transport theory than the 

fluxes obtained by REF. [8]. 

In Table 5, we present a comparison between the flux values obtained via transport 

and via diffusion, in addition with the relative error. When observing the column of relative 

errors, we noticed that the biggest errors are found in the nodes that make limits with the 

contours. This behavior was already expected since this is one of the places where the 
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diffusion approximation is not satisfactory due to Fick's Law. In the other nodes, we 

obtained small relative errors, in the order of 10
−2

. 

Table 5 : Comparison of the scalar fluxes of Test Problem 16-A1 in time 0.01s. 

Node 𝝓𝟏
𝑻𝒓𝒂𝒏𝒔 𝝓𝟏

𝑫𝒊𝒇𝒇
 Rel. error 𝝓𝟐

𝑻𝒓𝒂𝒏𝒔 𝝓𝟐
𝑫𝒊𝒇𝒇

 Rel. error 

1 0.02294 0.00795 0. 65334 0.00843 0.00368 0.56374 

10 0.19025 0.19722 0.03668 0.07894 0.08179 0.03607 

20 0.78486 0.83469 0.06348 0.18007 0.19105 0.06098 

30 1.47690 1.55075 0.05001 0.22399 0.23508 0.04952 

40 1.48072 1.54348 0.04238 0.21884 0.22873 0.04520 

50 1.23444 1.30073 0.05370 0.18239 0.19139 0.04938 

60 1.34930 1.39520 0.03402 0.19914 0.20643 0.03660 

70 1.05702 1.13393 0.07276 0.15763 0.16665 0.05723 

80 1.24768 1.29737 0.03983 0.18633 0.19380 0.04008 

90 0.95046 0.98964 0.04123 0.15620 0.16318 0.04470 

100 0.31208 0.32912 0.05461 0.10817 0.11335 0.04788 

110 0.06540 0.06044 0.07578 0.02893 0.02732 0.05557 

114 0.01836 0.00631 0.65603 0.00674 0.00292 0.56713 

4. CONCLUSIONS  

The transport equation that could predict the neutron distribution in detail for the 

design of nuclear reactors is still a challenge to be solved in its complete form. The diffusion 

equation is commonly used as a simpler model generating good results. In this work, we 

established a comparison of the two models in order to analyze the results for the K 

dominant eigenvalue and scalar fluxes. 

Comparing the two theories, in the particular case chosen in this study, especially in 

the interface regions and near the boundaries, the results found aligned with what was 

expected by theory, and it was possible to establish a more accurate absolute percentage error 

of the actual difference between the theories. 
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Possible modifications of neutron diffusion theory would be welcome in the sense of 

reducing the error concerning the more comprehensive model of neutron transport theory. 

Although a potential source of error in diffusion theory, namely Fick's Law, is widely 

acknowledged, quantitative results in this magnitude are not as firmly established, especially 

when the assumptions of its validity are not met. To find a new closure model that yields results 

closer to transport theory than the classical one, numerical results need to be established in 

depth, particularly in regions of significant neutron population variation where the validity of 

the law is not appropriate, in order to establish possible modifications to Fick's Law. 

Theoretical developments in this direction are already underway. Therefore, the 

contributions of this work have enabled the production not only of a computational tool that 

can be effectively used to generate results that constitute a good mathematical benchmark 

for testing numerical algorithms and codes to be adopted for reactor physics evaluations but 

also to produce a preliminary discussion on a new model to be adopted for the kinetics 

equations in order to increasingly approximate the realistic transport solution. 
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