
doi.org/10.15392/2319-0612.2024.2498
202x, V(I) | 01-13 | e2498

Submitted: 2024-06-04
Accepted: 2025-06-17

Efficient Acceleration in Solving the
2D Neutron Diffusion Equation with
CUDA: Exploring the Collaborative
Practicality of Colab

Pessoaa*, P.I.O.; Henricea, E.

a Eletronuclear, 20091-029, Rio de Janeiro, RJ, Brazil.

*Correspondence: ppessoa@eletronuclear.gov.br

Abstract: This paper explores an approach to accelerate the finite difference method
applied to solving the two-dimensional (2D) neutron diffusion equation for two energy
groups (2G) independent of time. The main innovation lies in the implementation of a
performance optimization method, emphasizing the practicality of development in
Python using direct browser collaboration through Google Colaboratory (Colab).
Utilizing CUDA (Compute Unified Device Architecture) for GPU acceleration, we
achieve significant computational performance improvements. The study compares
Python implementations using CuPy and NumPy libraries with traditional FORTRAN
implementations utilizing the LAPACK library, highlighting the efficiency and precision
of GPU-accelerated calculations. Results show that Python with CuPy significantly
outperforms NumPy, both in a Colab environment and on a personal desktop computer.
This demonstrates the practicality of cloud-based solutions for intensive computations,
as the ability to run code directly in the browser through Colab eliminates the need for
extensive local hardware resources. The results emphasize the convenience of executing
complex simulations without relying on physical computers, promoting greater flexibility
and accessibility in computational research. All computational codes are available on
GitHub for transparency and reproducibility.

Keywords: Neutron diffusion equation, NumPy, CuPy, Colab.

https://crossmark.crossref.org/dialog/?doi=10.15392/2319-0612.2025.2498&domain=pdf&date_stamp=2025-06-18

doi.org/10.15392/2319-0612.2024.2498
202x, V(I) | 01-13 | e2498

Submitted: 2024-06-04
Accepted: 2025-06-17

Aceleração eficiente na resolução da
equação de difusão de nêutrons 2D
com CUDA: explorando a praticidade
colaborativa do Colab

Resumo: Este artigo explora uma abordagem para acelerar o método de diferenças finitas
aplicado à resolução da equação de difusão de nêutrons bidimensional (2D) para dois
grupos de energia (2G) independentes do tempo. A principal inovação está na
implementação de um método de otimização de desempenho, enfatizando a praticidade
do desenvolvimento em Python utilizando a colaboração direta do navegador através do
Google Colaboratory (Colab). Utilizando CUDA (Compute Unified Device Architecture)
para aceleração de GPU, alcançamos melhorias significativas de desempenho
computacional. O estudo compara implementações Python usando bibliotecas CuPy e
NumPy com implementações tradicionais de FORTRAN utilizando a biblioteca
LAPACK, destacando a eficiência e precisão dos cálculos acelerados por GPU. Os
resultados mostram que Python com CuPy supera significativamente o NumPy, tanto em
um ambiente Colab quanto em um computador desktop pessoal. Isso demonstra a
praticidade das soluções baseadas em nuvem para cálculos intensivos, já que a capacidade
de executar código diretamente no navegador por meio do Colab elimina a necessidade
de extensos recursos de hardware locais. Os resultados enfatizam a conveniência de
executar simulações complexas sem depender de computadores físicos, promovendo
maior flexibilidade e acessibilidade na pesquisa computacional. Todos os códigos
computacionais estão disponíveis no GitHub para transparência e reprodutibilidade.

Palavras-chave: Equação de difusão de nêutrons, NumPy, CuPy, Colab.

https://crossmark.crossref.org/dialog/?doi=10.15392/2319-0612.2025.2498&domain=pdf&date_stamp=2025-06-18

Pessoa, P. I. O. and Henrice, E.

Brazilian Journal of Radiation Sciences, Rio de Janeiro, 2024, 12(4B): 01-13. e2498.

 p. 3

1. INTRODUCTION

This paper explores an approach to accelerate the finite difference method applied in

solving the two-dimensional (2D) neutron diffusion equation at two energy groups (2G) and

independent of time. The main innovation lies in the implementation of a method for

performance optimization, with an emphasis on the practicality of development in Python

using direct browser collaboration, through the Google Colaboratory environment (Colab).

The finite difference method [1] is a technique widely used in the simulation of

physical phenomena, especially around nuclear reactors. However, the growing need for

computational efficiency motivates the search for significant speedups. In this context,

CUDA (Compute Unified Device Architecture) is a parallel computing platform and

programming model created by NVIDIA, which will allow significant increases in

computational performance by taking advantage of the power of the graphics-processing

unit (GPU) to process data.

Other methods can also be accelerated using the same strategy. Among these, we can

mention methods as neutron transport [2], finite differences [1], finite elements [3], nodal

[4],[5]. Reconstruction methods [6],[7] are also on this list, highlighting the reconstruction

methods that use finite differences [8] and finite elements [9],[10]. Research [15],[16] into

Accelerator Driven System (ADS) type reactor can also be investigated.

The choice to implement the code in Python stands out for its accessibility and

flexibility [11]. Python's CuPy library [12] is used for GPU acceleration and the NumPy

library [13] is also used for testing in the work. Running directly in the browser through Colab

provides development convenience and the ability to run code on any device with internet

access. This democratizes access to the acceleration of complex calculations, making research

more inclusive and collaborative.

Pessoa, P. I. O. and Henrice, E.

Brazilian Journal of Radiation Sciences, Rio de Janeiro, 2024, 12(4B): 01-13. e2498.

 p. 4

To evaluate the effectiveness of the proposed method, we will compare the results

and computational times obtained using Python in the browser and FORTRAN, the latter

representing the conventional approach that uses the LAPACK library [14] to solve the

system arising from finite difference discretization. Furthermore, a personal computer will

be used as a comparison parameter, which highlights the importance of choosing hardware

in optimizing performance.

This study not only seeks to improve computational efficiency in solving complex

problems, but also seeks to democratize access to such advances. The intersection between

Python, CUDA and online collaboration represents a significant step towards a more accessible

and participatory community in scientific research and the simulation of physical phenomena.

2. METHODOLOGY

This study begins with the 2D neutron diffusion equation for two energy groups and

in Cartesian geometry:

−𝐷1∇2𝜙1(𝑥, 𝑦) + Σ𝑟,1𝜙1(𝑥, 𝑦) =
1

𝑘
∑ 𝜈Σ𝑓,𝑔′𝜙𝑔′(𝑥, 𝑦)

2

𝑔′=1

(1)

and

−𝐷2∇2𝜙2(𝑥, 𝑦) + Σ𝑟,2𝜙2(𝑥, 𝑦) = Σ2,1𝜙1(𝑥, 𝑦). (2)

The solution of equations (1) and (2) provides the detailed flux distribution for the

problem addressed, where 𝑘 is the multiplication factor and 𝐷𝑔
𝑛, Σ𝑟,𝑔

𝑛 , 𝜈Σ𝑓,𝑔
𝑛 and Σ𝑔′,𝑔

𝑛 the

group constants that characterize the homogeneous region of the pin cell.

The discretization of equations 1 and 2 by finite differences centered on the interface

leads to the following solution:

Pessoa, P. I. O. and Henrice, E.

Brazilian Journal of Radiation Sciences, Rio de Janeiro, 2024, 12(4B): 01-13. e2498.

 p. 5

𝑎1
𝑖−1,𝑗

𝜙1
𝑖−1,𝑗

+ 𝑎1
𝑖+1,𝑗

𝜙1
𝑖+1,𝑗

+ 𝑎1
𝑖,𝑗

𝜙1
𝑖,𝑗

+ 𝑎1
𝑖,𝑗−1

𝜙1
𝑖,𝑗−1

+ 𝑎1
𝑖,𝑗+1

𝜙1
𝑖,𝑗+1

=
1

𝑘
(𝑓1

𝑖,𝑗
𝜙1

𝑖,𝑗
+ 𝑓2

𝑖,𝑗
𝜙2

𝑖,𝑗
) (3)

and

𝑎2
𝑖−1,𝑗

𝜙2
𝑖−1,𝑗

+ 𝑎2
𝑖+1,𝑗

𝜙2
𝑖+1,𝑗

+ 𝑎2
𝑖,𝑗

𝜙2
𝑖,𝑗

+ 𝑎2
𝑖,𝑗−1

𝜙2
𝑖,𝑗−1

+ 𝑎2
𝑖,𝑗+1

𝜙2
𝑖,𝑗+1

= 𝑞𝑖,𝑗𝜙1
𝑖,𝑗

. (4)

The terms 𝑎𝑔
𝑖−1,𝑗

, 𝑎𝑔
𝑖+1,𝑗

, 𝑎𝑔
𝑖,𝑗

, 𝑎𝑔
𝑖,𝑗−1

, 𝑎𝑔
𝑖,𝑗+1

, 𝑓1
𝑖,𝑗

, 𝑓2
𝑖,𝑗

 and 𝑞𝑖,𝑗 are written as a function

of the group constants and can be different depending on the region of the problem contour.

We can completely represent the equations 3 and 4 by ordering the fluxes and forming

vectors and matrices:

𝝓𝒈 ≡ [𝜙𝑔
1,1, 𝜙𝑔

2,1, … , 𝜙𝑔
𝑁,1, … , 𝜙𝑔

𝑁,𝑁]
𝑇
 (5)

𝐴𝑔 ≡ 𝑝𝑒𝑛𝑡𝑎𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙[𝑎𝑔
𝑖,𝑗−1

, 𝑎𝑔
𝑖−1,𝑗

, 𝑎𝑔
𝑖,𝑗

, 𝑎𝑔
𝑖+1,𝑗

, 𝑎𝑔
𝑖,𝑗+1

] (6)

𝐹𝑔 ≡ 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙[𝑓𝑔
1,1, 𝑓𝑔

2,1, … , 𝑓𝑔
𝑁,1, … , 𝑓𝑔

𝑁,𝑁] (7)

and
𝑄 ≡ 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙[𝑞1,1, 𝑞2,1, … , 𝑞𝑁,1, … , 𝑞𝑁,𝑁]. (8)

With these definitions, we can rewrite equations 3 and 4 in their discretized form:

𝐴1𝝓𝟏 =
1

𝑘
[𝐹1𝝓𝟏 + 𝐹2𝝓𝟐] (9)

and
𝐴2𝝓𝟐 = 𝑄𝝓𝟏. (10)

Grouping further we can rewrite the entire system of equations as

𝐴𝚿 = 𝐬, (11)

with

𝚿 = [𝝓𝟏, 𝝓𝟐]𝑇; 𝐴 = [
𝐴1 0
−𝑄 𝐴2

] ; 𝐹 = [
𝐹1 𝐹2

0 0
] ; 𝒔 =

1

𝑘
𝐹𝚿. (12)

Pessoa, P. I. O. and Henrice, E.

Brazilian Journal of Radiation Sciences, Rio de Janeiro, 2024, 12(4B): 01-13. e2498.

 p. 6

Then, we arrive at a system of linear equations represented by the form in equation

(11), where 𝐴 is the coefficient matrix, 𝚿 is the neutron flux vector and 𝒔 is the source vector.

Solving this system is essential to obtain information about the distribution of neutrons in

the system under study.

3. RESULTS AND DISCUSSIONS

As a first test, we discretize the one-dimensional (1D) neutron diffusion equation for

an energy group using finite differences. The 1D problem addressed is a homogeneous slab

with 400 cm and zero flux boundary condition. The group constants for this problem are

𝐷 = 1.320, Σ𝑎 = 0.041, νΣ𝑓 = 0.045 and the homogeneous region divided into 4000

meshes with the intention of making the calculations more difficult by increasing the matrix

𝐴 (4000x4000) of the problem. The multiplication factor found in all simulations was 𝑘 =

1.0975610. For a second test, we discretized the 2D neutron diffusion equation for two

energy groups using finite differences. The problem 2D addressed is homogeneous with zero

flux on the boundary, dimensions of 50𝑥50 𝑐𝑚 and divided into 50𝑥50 meshes. The group

constants for this problem are in Table 1. The multiplication factor found in all simulations

was 0.7294215.

Table 1: Group constants for the 2D problem.

g 𝚺𝒂,𝒈(𝒄𝒎−𝟏) 𝝂𝚺𝒇,𝒈(𝒄𝒎−𝟏) 𝑫𝒈(𝒄𝒎) 𝚺𝒈,𝒈′(𝒄𝒎−𝟏)

1 0.0130 0.0065 1.5000 0.0065

2 1.1800 0.2400 0.4000 0.0000

The 1D and 2D problems were run on the different computing environments,

platforms and libraries using the group constants provided. Neutron fluxes were calculated

and normalized to maximum neutron flux. Thus, Figures 1, 2 and 3 were generated,

Pessoa, P. I. O. and Henrice, E.

Brazilian Journal of Radiation Sciences, Rio de Janeiro, 2024, 12(4B): 01-13. e2498.

 p. 7

respectively, for the 1D problem and for the fast and thermal fluxes profiles of the 2D

problem.

Figure 1: Neutron flux for the 1D problem.

Source : Generated using Python with NumPy and Matplotlib libraries.

Figure 2: Fast neutron flux profiles for the 2D problem.

Source: Generated using Python with NumPy and Matplotlib libraries.

Pessoa, P. I. O. and Henrice, E.

Brazilian Journal of Radiation Sciences, Rio de Janeiro, 2024, 12(4B): 01-13. e2498.

 p. 8

Figure 3: Thermal neutron flux profiles for the 2D problem.

Source: Generated using Python with NumPy and Matplotlib libraries.

Figures 1, 2 and 3 show the neutron fluxes of the 1D and 2D problems, which gives

more clarity to the results obtained. It is worth mentioning that the errors associated with

the neutron fluxes obtained by different environments and platforms are practically zero,

highlighting the precision and reliability of the computational simulations.

Regarding the accuracy associated with mesh refinement, good numerical agreement

is observed. In the 1D problem, with 8000 (ℎ = 0.05 𝑐𝑚), 4000 (ℎ = 0.1 𝑐𝑚) e 2000 (ℎ =

0.2 𝑐𝑚) spatial divisions, the scalar neutron flux at a fixed point near the boundary

consistently converges to approximately 0.36406, demonstrating high numerical stability. In

the 2D case, using 25 (ℎ = 2,0 𝑐𝑚), 50 (ℎ = 1,0 𝑐𝑚) e 100 (ℎ = 0,5 𝑐𝑚) divisions,

variations in the scalar neutron flux at the same point remain confined to the third decimal

place for both energy groups, while the effective multiplication factor shows differences only

in the fourth decimal place.

Pessoa, P. I. O. and Henrice, E.

Brazilian Journal of Radiation Sciences, Rio de Janeiro, 2024, 12(4B): 01-13. e2498.

 p. 9

Although the main goal of the article is to accelerate the solution process, the results

obtained show excellent agreement between the analytical and numerical solutions for both

problems analyzed. In the 1D problem, the analytical value of the effective multiplication

factor is 1.0953856, while the numerical value is 1.0975610, resulting in a relative error of

approximately 0.2%. In the 2D problem, the analytical value calculated was 0.7293548, and

the corresponding numerical value was 0.7294215, with a relative error of less than 0.01%.

These results demonstrate the accuracy of the implemented numerical solutions and validate

the reliability of the proposed method.

Table 2 presents the computational times for executing the code in two different

environments. In the first environment, a computer equipped with a 3.00GHz Intel Core i5-

7400 processor, a GTX 980 Ti GPU with 2816 CUDA cores and 32 GB of RAM, the

execution times for the 1D and 2D problems were, respectively, as follows: 1.33 s and 2,42

s for Fortran compiled with Intel Fortran 2020 and LaPACK library [14], 0.98 s and 10,67

for Python with the NumPy library [13] and 0.89 s and 9,65 s for Python with the CuPy

library [12]. It is observed that for the 1D problem, on the same hardware, the Fortran

implementation was slower compared to the Python version using the NumPy library.

However, for the 2D problem, Fortran implementation was much faster than the Python

implementation using the NumPy library, around 70% faster. Now, using the CuPy library

resulted in shorter processing time for both problems in relation to the NumPy library, but

the Fortran implementation proved to be faster.

On the other hand, when using the Colab environment directly from the browser,

which has a 2.20GHz Intel Xeon CPU, a T4 GPU with 2560 CUDA cores and 12.7 GB of

RAM, the execution times for the 1D and 2D problems were, respectively, 2.89 s and 51,12

for Python with NumPy and 0.79 and 7.51 for implementation with CuPy library. These

results show that the CuPy implementation was much more efficient than NumPy.

Pessoa, P. I. O. and Henrice, E.

Brazilian Journal of Radiation Sciences, Rio de Janeiro, 2024, 12(4B): 01-13. e2498.

 p. 10

Table 2: Computational times for 1D and 2D problems.

Methods 𝒕𝟏(𝒔) 1D problem 𝒕𝟐(𝒔) 2D problem

Fortran (CPU) 1.33 2.42

Python with NumPy (CPU) 0.98 10.67

Python with CuPy (GTX 980 TI) 0.89 9.65

Python with NumPy (Colab) 2.89 51.12

Python with CuPy (Colab) 0.79 7.51

These results highlight the importance of choosing the programming language and

libraries used, as well as the influence of available hardware. Although Fortran has shown

good performance, especially compared to pure Python, using libraries like CuPy can offer a

significant advantage in terms of computational efficiency, especially when it comes to GPU-

intensive calculations. The difference in performance between local hardware and the Colab

environment also highlights the importance of considering the characteristics of the

execution environment when performing performance analysis.

4. CONCLUSIONS

In summary, our tests showed significant variations in computational performance

across different programming languages, libraries, and hardware environments when

implementing the neutron diffusion equation. Although Fortran performed better, Python

with the CuPy library proved to be efficient and useful, mainly due to the ease of accessing

the software and hardware provided directly through the browser Implementation with the

CuPy library led to over 70% reduction in execution time compared to the NumPy library

on the Colab platform. On the personal computer, the reduction was approximately 10% for

the 1D and 2D problems. This demonstrates the effectiveness of GPU acceleration in

handling computationally intensive calculations such as neutron diffusion problems.

Pessoa, P. I. O. and Henrice, E.

Brazilian Journal of Radiation Sciences, Rio de Janeiro, 2024, 12(4B): 01-13. e2498.

 p. 11

 Furthermore, the Colab environment provided a convenient platform for

computational experiments without the need for extensive local hardware resources. The

Colab platform can also offer the option to purchase additional computing power. Leveraging

Colab's computing power remotely highlights the importance of cloud-based solutions. This

accessibility promotes collaboration and innovation in the scientific community.

Looking to the future, it is important to note that this work will be extended to solve

the 2D and 2G neutron diffusion equation for heterogeneous problems, which could

simulate commercial nuclear reactors. Future research could explore this acceleration

technique in other methods in the nuclear area, application in three-dimensional geometries

and time-dependent problems.

All computational codes mentioned in this article will be publicly available in the

GitHub repository [https://github.com/Nuclear2024/Efficient-Acceleration-in-Solving-

the-2D-Neutron-Diffusion-Equation-with-CUDA.git] to ensure collaboration, transparency

and reproducibility of this research.

ACKNOWLEDGMENT

We would like to express our sincere gratitude to Eletronuclear for granting us the

necessary permission to conduct this work. Your collaboration and support were fundamental

to the success of this project. We are deeply grateful for your generosity and trust.

REFERENCES

[1] Derstine, K.L. DIF3D: a code to solve one-, two-, and three-dimensional finite-
difference diffusion theory problems. ANL- Technical Report-82-64. United States,
1984.

Pessoa, P. I. O. and Henrice, E.

Brazilian Journal of Radiation Sciences, Rio de Janeiro, 2024, 12(4B): 01-13. e2498.

 p. 12

[2] Fletcher, J.K. “The solution of the time-independent multi-group neutron transport
equation using spherical harmonics”. Annals of Nuclear Energy, vol. 4, pp. 401–405,
1977.

[3] Araujo, L.M.; Carmo, E.G.D.; Silva, F.C. Galerkin partial least-square SN (GpLS - SN)
method for fixed source problems in the neutrons transport theory. Annals of Nuclear
Energy. vol. 90, pp. 175-190, 2016.

[4] Finnemann, H.; Bennewitz, F.; Wagner, M.R. Interface current techniques for
multidimensional reactor calculations. Atomkernenergie. vol. 30, pp. 123-128, 1977.

[5] Silva, A.; Pessoa, P.O.; Silva, F.C.; Martinez, A.S. Two-dimensional analytical solution
for nodal calculation of nuclear reactors. Annals of Nuclear Energy, vol. 100, pp. 76-
81, 2016.

[6] Pessoa, P.O.; Silva, F.C.; Martinez, A.S. Analytical method of pin-by-pin reconstruction
of the nuclear power density distribution. In: INTERNATIONAL NUCLEAR
ATLANTIC CONFERENCE – INAC. PE, Brazil, 2013.

[7] Pessoa, P.O.; Silva, F.C.; Martinez, A.S. Methods for reconstruction of the density
distribution of nuclear power. Annals of Nuclear Energy, vol. 83, pp. 76–86, 2015.

[8] Pessoa, P.O.; Silva, F.C.; Martinez, A.S. Finite difference applied to the reconstruction
method of the nuclear power density distribution. Annals of Nuclear Energy, vol. 92,
pp. 378–390, 2016.

[9] Pessoa, P.O.; Araujo, L.M.; Silva, F.C. A strategy for pin power reconstruction based on
classic Galerkin variational formulation. Progress in Nuclear Energy, vol. 104, pp.
251–263. 2018.

[10] Pessoa, P.O.; Araujo, L.M.; Silva, F.C. Numerical methods applied to pin power
reconstruction based on coarse-mesh nodal calculation. Annals of Nuclear Energy,
vol. 118, pp. 291–312, 2018.

[11] Pessoa, P.O. and Henrice, E. J. Efficient Acceleration in Solving the 2D Neutron
Diffusion Equation with CUDA: Exploring the Collaborative Practicality of Colab. In:
INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE – INAC. RJ, Brazil,
2024.

[12] Okuta, R.; Unno, Y.; Nishino, D.; Hido, S.; Loomis, C. CuPy: A NumPy-Compatible
Library for NVIDIA GPU Calculations. In: 31ST CONFERENCE ON NEURAL
INFORMATION PROCESSING SYSTEMS (NIPS 2017), Long Beach, CA, USA,
2017.

Pessoa, P. I. O. and Henrice, E.

Brazilian Journal of Radiation Sciences, Rio de Janeiro, 2024, 12(4B): 01-13. e2498.

 p. 13

[13] Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau,
D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; Kern, R.; Picus, M.; Hoyer, S.; van
Kerkwijk, M.H.; Wieser, E.; Brett, M.; Haldane, A.; Del Rio, J.F.; Wiebe, M.; Peterson,
P.; Sheppard, K.; Reddy, T.; Weckesser, W.; Abbasi, H.; Gohlke, C.; Oliphant, T.E.
Array programming with NumPy. Nature, vol. 585, pp. 357-362, 2020.

[14] Anderson, E.; Bai, Z.; Bischof, C.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum,

A.; Hammarling, S.; McKenney, A.; Sorensen, D.  LAPACK Users’ Guide. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.

[15] Henrice, E.; Palma, D.A.P.; Gonçalves, A.C. Online identification of trips caused by the
external proton source in an ADS reactor. Nuclear Engineering and Design, vol.
383, pp. 111-419, 2021.

[16] Henrice, E.; Palma, D.A.P.; Gonçalves, A.C.; Mesquita, A.Z. Support to the
identification of anomalies in an external neutron source using Hurst Exponents.
Progress in Nuclear Energy, vol. 99, pp. 119-126, 2017.

LICENSE

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made. The images or other third-party material in this article are included in the article’s
Creative Commons license, unless indicated otherwise in a credit line to the material.
To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

