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Abstract: The performance of neutronic calculations is a fundamental process for the 
analysis and design of nuclear reactors. However, due to the intrinsic complexity of these 
calculations, their solution is nearly impossible, whether through analytical or numerical 
methods. This work, through the application of a four-layer multilayer perceptron 
artificial neural network to the neutron transport equation, demonstrates the benefits of 
using neural computing for electronic calculations. 
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Rede neural de perceptron 
multicamadas aplicadas à equação de 
transporte de neutrons para o modelo 
de difusão de velocidade única de um 
reator nuclear com uma abordagem 
neurocomputacional para cálculos 
neutrônicos 

 

 

Resumo: O desempenho dos cálculos neutrônicos é um processo fundamental para a 
análise e o projeto de reatores nucleares. No entanto, devido à complexidade intrínseca 
desses cálculos, sua solução é quase impossível, seja por métodos analíticos ou numéricos. 
Este trabalho, por meio da aplicação de uma rede neural artificial de perceptron 
multicamadas com quatro camadas à equação de transporte de nêutrons, demosntra os 
benefícios do uso da computação neural para cálculos neutrônicos.  

Palavras-chave: Métodos Neurocomputacionais, Equação de Transporte de Nêutrons, 
Análises Físicas, Análise de Reatores. 
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1. INTRODUCTION  

In the context of nuclear reactor analysis, Neutronic Calculations are an attempt to 

describe and model the behavior observed in neutrons within the space of a given reactor. 

Among the phenomena described by neutronic equations is the neutron transport equation, 

which aims to describe the distribution of neutrons inside the reactor at any given moment, 

a fundamental factor for determining the occurrence of various reactions in the reactor. 

 However, despite its evident importance, solving neutronic calculations is challenging 

and often unattainable, with hopes of exact solutions only feasible for the simplest cases. The 

difficulty in solving neutronic calculations is rooted not only in the intrinsic complexity of 

the equations, which are multivariate and nonlinear, making their resolution through 

analytical means difficult, but also in their high dimensionality, multi-group approximation, 

and strong coupling. While complexity hinders their resolution through analytical methods, 

the large number of interactions, variables, and iterative renders their solution impossible 

through numerical methods [Duderstadt, 1974]. 

Significant effort is invested in the development of algorithms and numerical methods 

to aid in solving these equations, thereby enhancing the credibility of analyses that depend 

on them. However, there is limited discussion in the literature regarding a new approach to 

solving these problems: neural computing.  

Neural computing is an attempt to model and formulate a computational approach 

capable of mimicking some of the characteristics found in neuron processing and the human 

brain. Among the targeted features, it's worth noting neuroplasticity and lateralized 

processing, in which the brain doesn't need to repeat calculations many times, and it can 

perform various calculations concurrently. Both characteristics, precisely because they reduce 
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the computational demand of processes, make neural computing optimal for solving 

problems that are insoluble by analytical and numerical methods [Bishop, 1994]. 

Among the possible models and architectures for solving problems, many of them 

are sophisticated and particularly powerful for the task. This work opted for the use of the 

simplest architecture, the multilayer perceptron. Specifically, a 4-layer perceptron, as shown 

in Image 1, with gradient descent learning, precisely due to its simplicity. The main purpose 

of this work is to demonstrate the feasibility of applying neurocomputational methods in 

solving neutron equations, and for this purpose, there is significant value in using the 

simplest possible example. 

Figure 1: 4-layered-perceptron 

                                  

 

  It's worth noting that the processing of a neural network will be proportionally more 

costly as the number of weights used in a backpropagation network increases [Bishop, 1994]. 

Therefore, given that the topology of this neural network has a total of thirty six weights, the 

expectation is that its processing will be remarkably fast.  

The neutron transport equation originates from the Boltzmann equation for the study 

of gas movement in 1800. It arises from the understanding of concepts such as neutron 
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density, interaction frequency, interaction rate density, as well as angular counterparts, 

considering the direction of the neutron's trajectory, and angular current density.  

These fundamental concepts become the building blocks for describing the processes 

of neutron gain and loss within a volume of interest inside the reactor. In the single velocity 

diffusion model, the transport equation is described by Equation 1, 

 

                                                                     eq 1 

It's important to note that, unlike the Boltzmann equation, the neutron transport equation 

is linear. The methodology currently used in reactor design albeit being an attempt to solve the 

neutron transport equation oftentimes is using approximations obtained through analytical and 

often stochastic methods and can have inherent undesirable computational costs.  

Through all the gain and loss functions described in Equation 1, it is observed that 

the inputs within the functions repeatedly include r, E, t, and Ω, some of them having an 

apostrophe. These variables are essential for describing the state of a given neutron and are, 

respectively, the position vector, energy, measurement time, and the direction of particle 

movement. The counterparts with an apostrophe represent either the energy that entered the 

relevant energy for solving the problem through the scattering process or the direction that 

has the same destination.  

It is precisely these four variables that become the foundation for modeling the 

employed neural network. The network is iteratively fed with these four variables, suitably 

normalized, and trained so that its output corresponds to what can be obtained through 

stochastic methods and, ultimately, what can be obtained experimentally.   
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After modeling, the neural network is programmed in Python, using mathematical 

libraries such as NumPy, and the data to be fed into the network is properly prepared. Once 

this is done, the neural network is trained and tested. For the training and testing of this 

neural network, experimental data is used, as well as data obtained using stochastic methods 

already employed for solving this equation, with appropriate stochastic treatment. The 

training of this neural network involved introducing the four input variables of the neutron 

transport equation, time, input energy, orientation, and position, as an input vector in the 

zero layer and the final calculated or experimentally obtained position as the target output. 

Gradient descent learning was also used, as it is not only simpler but also particularly suitable 

for linear equations like this.  

In this work, an artificial neural network was employed to overcome the computational 

obstacles that exist for simulating the neutron transport equation for the single velocity 

diffusion model, to demonstrate the possibility of using neurocomputational methods to solve 

neutron equations. Nevertheless, it was hoped that the results would demonstrate that in the 

worst case, the neural network can describe neutron diffusion with the same fidelity as current 

stochastic methods, requiring only a fraction of the computation time.  

However, it's worth noting that the application of neurocomputational methods 

should not be done lightly. Artificial neural networks have at their core an unsolved problem, 

the black box problem. In a given convolutional neural network, regardless of its depth, it 

becomes impossible to determine how decisions are being made, effectively hiding decision-

making within a "black box" [Rawashadeh, 2023]. Thus, it is strongly discouraged to apply 

neural methods to any problems whose modeling has not yet been unraveled. Although 

challenging, neutron equations satisfactorily describe the observed behavior within a nuclear 

reactor and, therefore, serve to avoid this problem.  
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1.1. Objective 

The central objective of this work is to assess the benefits of using artificial neural 

networks for neutronic calculations by applying a 4-dimensional multilayer perceptron 

neural network to the calculation of neutron transport in the single velocity diffus ion 

model of a nuclear reactor. 

2. MATERIALS AND METHODS 

The modeling of the problem is remarkably straightforward. Firstly, we know the 

reactor source, and given its model, we know the position it occupies. We also know, with a 

certain degree of accuracy and precision, thanks to experimental data and stochastic data, the 

final position of the neutrons. This gives us a version of neutron density within the volume 

determined by the reactor's sensors. 

The task of the neural network is simple: to estimate a value within the allowable error 

range for the neutron density in each of the volumes or detectors, given the source data.  

The geometry of the problem is primarily determined by the experimental data used. 

In particular, the ReGal project uses radial geometry, as illustrated in Image 2.  

2.1 Network topology modeling 

The modeling of the neural network starts with an understanding of the inputs in 

Equation 1, the neutron transport equation, with the goal of incorporating them into the 

neural network as the input vector. The input values in the equation are:  

 



 
 

Ferreira-Savio et al. 

 

 
 
Brazilian Journal of Radiation Sciences, Rio de Janeiro, 2024, 12(4): 01-16. e2541. 

  p. 8 

 

The values are:  

   Position Vector r: r =  [r, φ, ϕ]. 

Orientation: Ω′ =  [α, φ, ϕ ] 

Time: t =  [0, tf) 

2.  Energy E′ =  En ∊  dE 

However, since the neural network simply uses the source as an input, we need to use 

the position and energy. The position is zero, as the space is being understood radially. As 

for energy, it mainly depends on the type of fuel in the rod and the nature of emissions. For 

each fuel rod, a discrete set of possible energies must be assumed, from which neutrons 

ultimately choose one. It should be noted that despite the observed mean free path of 

neutrons, there is a noticeable zig-zag trajectory due to collisions, which can significantly 

affect the final distance [Duderstadt, 1970]. 

The output vector consists of ten sections along the main diagonal inside the 

reactor, with each output node corresponding to a segment. For each node, a neutron 

flux value is determined. 

The output vector is described as follows: 

Yk =  [ф1, ф2, ф3, ф4, ф5, ф6 , ф7, ф8, ф9, ф10 ] 

where,  фi(ri, E, t) =  vN(ri, t), and so that every i corresponds to a section along 

the main diagonal. 

The geometry of the problem is best described in figure 2. It is through this setup that 

the data is collected and explored in the network. 
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Figure 2: reactor’s Geometry 

 

Source: Hognhangh, 2023 

 

Indeed, artificial neural networks can be mathematically described in such a way that 

each node Yj in the i layer is composed of a linear combination of its inputs multiplied by its 

weights, with the addition of a bias term. Mathematically, this is represented as described in 

Equation 2: 

Yji =  g(∑n
0 wijxij)                                       eq. 2 

Where g is the appropriate activation function for the chosen learning process.  

The preferred architecture includes four layers: the first layer is composed of two inputs, 

the second layer with 3 nodes, the third layer with 4 nodes, and the output layer with 10 nodes.  

2.2 Learning and activation functions 

The choice of activation function for this neural network was based not only on the 

suitability of the employed learning method, namely, gradient descent but also on favoring 

the normalization of its values.  

The output is described by density, and its ideal normalization is achieved through a 

ratio of the maximum observed neutron flux given a maximum macroscopic cross-section. 
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The distance along the diagonal is also represented by a ratio, this time of the maximum 

distance. However, energy is represented by the ratio of the chosen energy to the maximum 

possible energy, except that it is always a discrete value. 

It is observed, therefore, that in general, there is a low expectation of encountering 

negative values, and thus the Softmax activation function can confidently be employed, as 

shown in Figure 3: 

Figure 3: Sigmoidal Function Graph. 

      

This can be described by the following equation: 

                                                eq6 

This always constrains the values within the neural network to be between zero and 

one and thus serves our needs. 

 In addition to that, in this neural network, the ReLU activation function was 

also used for all layers except the last one, which generates the outputs. 

The learning method employed is simply backpropagation and gradient descent. 
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Essentially, once the neural network estimates a value for the neutron flux at a certain 

position along the diagonal, the target values will be either above or below.  The neural 

network adjusts its weights and estimates again until it converges to a solution.  

For the implementation of gradient descent, a loss function is first established to allow 

the neural network to take a step in the direction of the greatest reduction in error. This is 

achieved using a derivative that aims to minimize the error function for each of the variables. 

In each iteration, called an epoch the neural network reevaluates this multivariate derivative 

with all its updated weights. 

The updated weights are described in Equation 7. 

                  eq7 

Where E is the error function, and there are known values called hyperparameters, 

specifically the learning rate η and the momentum μ.  

The error function used is the sum of squared errors, as shown in Equation 8. 

                                                  eq8 

This choice is based on its simplicity and statistical origin. 

2.3 Data harvesting and treatment  

The experimental data used comes from the ReGal project at the Belgian Nuclear 

Research Center and was obtained experimentally by placing sensors radially along the 

reactor [Govers, 2018]. 

The stochastic source data was extracted from studies of modern algorithms for 

solving the neutron transport equation, namely, the TOUCANS algorithm [Thulliez, 2023] 
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and ROM [Honghang, 2023]. Both provide maps of the observed neutron flux along the 

main diagonal of the reactor.  

The data was manually extracted from the published papers and then fed into the 

neural network. The data obtained from TOUCANS and ROM are depicted in Figures 4 

and 5, respectively. 

Figure 4: Data TOUCANS 

 

Source: Thulliez, 2023 

Figure 5: Data ROM 

 

Source: Honghang 2023 
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3. RESULTS AND DISCUSSION 

The results obtained through training the artificial neural network are presented in 

Figure 8, which illustrates the neutron flux distribution along the main diagonal, like what 

would be achieved using a modern stochastic method with up to 90% accuracy.  

Figure 6:  Neutron flux along the diagonal. 

 It's important to note that seeking higher precision than this with any databases can 

potentially overfit the network and impair its performance with data outside of its training 

set, which would be the case in real-world applications.  

3.1. Data interpretation 

The data displayed in Figure 6 were obtained through training that used data from 

stochastic methods. Despite the model's ideal accuracy of 90%, it is essential to be aware that 

it carries the error of these methods. Furthermore, it is crucial to note that the databases used 

are not ideal for applications, as they were manually extracted from other works instead of 

being properly collected experimentally from a reactor and refined. The same can be said 

about the architecture employed, as other architectures would likely yield more suitable 

results, given that the neutron transport equation has a time dependence and is a differential 

equation. Higher levels of success could easily be achieved using convolutional neural 
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networks, recurrent neural networks, or a hybridization of the two, as they are better 

equipped to solve this type of problem than the equipped to solve this type of problem than 

the neural network used in this work. 

With that said, it is worth acknowledging the success of employing 

neurocomputational techniques for solving the neutron transport equation. Based on the 

data obtained, it is possible to generate results with a fraction of the computational power 

typically required. As the methodology evolves, it is conceivable that such an approach could 

be significantly advantageous for the analysis and modeling of reactors. 

4. CONCLUSIONS 

Therefore, the training of the artificial neural network has shown promising results in 

approximating neutron flux distribution along the main diagonal, as illustrated in Figure 8. 

Achieving up to 90% accuracy comparable to modern stochastic methods is a significant 

achievement. However, caution is needed when aiming for higher precision, as it may lead 

to overfitting and diminish the network's performance on real-world data. The reliance on 

databases derived from stochastic methods and less-than-ideal experimental data highlights 

the potential for improvement through alternative architectures such as convolutional neural 

networks or their hybrids. Despite these challenges, the application of neurocomputational 

techniques offers a compelling path to enhancing the efficiency and accuracy of reactor 

analysis and modeling, paving the way for future advancements in this critical field.  
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