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Abstract: This work uses the numerical method known as Piecewise Constant 
Approximation, PCA, to solve the equations of modified point kinetics for six groups of 
delayed neutron precursors. The modified point kinetics corresponds to the point kinetics 
model without considering the approximation for the derivative of the logarithm of the 
neutron current. Applying the PCA method approximates the reactivity function to 
continuous piecewise functions, and the resulting system of first-order differential 
equations can be solved exactly in each time partition. For validation, numerical 
simulations are carried out for the cases of constant reactivity, step type and time-varying 
reactivity, ramp type, and the results are compared with those obtained by the finite 
difference method. Quantitative analysis of the results shows that the PCA method can 
efficiently obtain good results for modified point kinetics.  
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Aplicação do Método de Aproximação 
por Funções Constantes por Partes na 
Cinética Pontual Modificada 

Resumo: O presente trabalho utiliza o método numérico conhecido como “Piecewise 
Constant Approximation”, PCA, na solução das equações da cinética pontual modificada 
para seis grupos de precursores de nêutrons atrasados. A cinética pontual modificada 
corresponde ao modelo da cinética pontual sem considerar a aproximação para a derivada 
do logaritmo da corrente. Aplicando-se o método PCA, a função reatividade é aproximada 
para funções contínuas por partes, e o sistema de equações diferenciais de primeira ordem 
resultante pode ser resolvido de maneira exata em cada partição do tempo. Para validação, 
são feitas simulações numéricas para os casos de reatividade constante, tipo degrau, e 
reatividade variante no tempo, tipo rampa e os resultados são comparados com os obtidos 
pelo método de diferenças finitas. A análise quantitativa dos resultados mostra que o 
método PCA pode ser empregado para obter, com eficiência, bons resultados também na 
cinética pontual modificada.  

Palavras-chave: reatividade, cinética pontual, PCA, tempo de relaxação. 
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1. INTRODUCTION  

By studying the behavior of the neutron population, it is possible to infer the stability 

of the chain reaction carried out in the reactor core. The central problem of nuclear reactor 

theory is determining the distribution of neutrons inside the reactor, as this will determine 

the rate at which the various nuclear reactions will take place inside the reactor. An 

important topic in reactor physics analysis is neutron kinetics, which makes it possible to 

predict the temporal behavior of the neutron population as a function of changes in 

reactivity. To determine the distribution of neutrons inside the reactor, the transport 

process, which is the movement of neutrons as they move around, often interacting with 

atomic nuclei through scattering and eventually being absorbed or escaping from the 

reactor, must be studied. The time-dependent neutron transport equation provides an 

accurate description of the behavior of the neutron distribution varying with time. Still, the 

solution of this equation is very complex, even for the stationary case. The neutron 

diffusion model is based on approximations from neutron transport theory and leads to 

the neutron diffusion equation, which, although not exact, the solution provided is 

obtained in a simple way and can be used in various cases of interest, satisfactorily 

describing the time-dependent neutron distribution. One of the neutron transport theories 

approximating that leads to the diffusion model is Fick's Law, which relates the neutron 

current density to the scalar flux. In the so-called point kinetics model, obtained from the 

diffusion model with an energy group, it is hypothesized that the spatial dependence of the 

neutron flux can be described from a single mode - the fundamental mode. With this 

proposition, it is possible to remove the spatial dependence of the diffusion model, arriving 

at a description involving only time-dependent ordinary differential equations [1]. The 

point kinetics equations are one of the most essential models in nuclear engineering. They 

have been the subject of several studies and applications for understanding neutron 
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dynamics and its effects. There are scientific papers in the literature dating from the 1950s 

to the present day that use different methodologies to approach point kinetics (e.g., [2], [3], 

[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], 

[23], [24], [25], [26], [27], [28], [29], [30]). In [20] it was developed the PCA method, 

"Piecewise Constant Approximation", which is based on approximations of the source and 

reactivity functions by piecewise continuous functions, efficiently calculating the solution 

of the point kinetics equations. In [26], a modified point kinetics model was proposed that 

considers the P1 equation without neglecting the derivative of the neutron current density 

instead of adopting the approximation given by Fick's Law, which results in the classical 

point kinetics equations. In [26] it was applied the traditional numerical method of finite 

differences to solve the equations of modified point kinetics. Modified point kinetics can 

be interpreted as a particular case of the fractional point kinetics model developed by [25]. 

This work aims to obtain the solution of the modified point kinetics equations 

deduced by [26] and [30] using the PCA method proposed by [20]. The methodology's 

application is validated by comparing it with the results obtained using the finite 

difference method. Quantitative analyses are made for the cases of constant reactivity, 

step type (prompt-subcritical, prompt-critical, and prompt-supercritical), and time-

varying reactivity, ramp type. 

The next section presents the mathematical development to implement the PCA 

method in modified point kinetics. In section 3, the proposed method is tested on two types 

of transients, typically used to check the responses of methods based on the point kinetics 

model. The final section presents the concluding analysis and future recommendations. 
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2. MATERIALS AND METHODS 

2.1. Modified Point Kinetics and Point Kinetics 

The modified point kinetics equations can be derived from the time-dependent 

neutron transport equations, as demonstrated in detail by [26] and later by [30]. These 

equations are given by:  

 

𝜏
𝑑2𝑛(𝑡)

𝑑𝑡2
+ [1 + 𝜏 (

1

𝑙
−

1 − 𝛽

Λ
)]

𝑑𝑛(𝑡)

𝑑𝑡
=

𝜌(𝑡) − 𝛽

Λ
𝑛(𝑡) + ∑𝜆𝑖 (𝐶𝑖(𝑡) + 𝜏

𝑑𝐶𝑖(𝑡)

𝑑𝑡
)

𝑚

𝑖=1

 (1) 

 

𝑑𝐶𝑖(𝑡)

𝑑𝑡
=

𝛽𝑖

𝛬
𝑛(𝑡) − 𝜆𝑖𝐶𝑖(𝑡)     𝑖 = 1, 2,… ,𝑚. (2) 

 

Where 𝑛(𝑡) is the neutron population; Λ is the neutron generation time; 𝜌(𝑡) is the 

time-dependent reactivity function; 𝑙 = 𝑓𝑎
−1 = (𝜐Σ𝑎)−1 is the average prompt neutron 

lifetime; 𝑚 is the total number of delayed neutron precursor groups; 𝛽𝑖  is the fraction of 

delayed neutrons of precursor group 𝑖; 𝛽 is the total fraction of delayed neutrons; 𝐶𝑖(𝑡) is 

the concentration of delayed neutron of precursor group 𝑖; 𝜆𝑖  is the decay constant of 

precursor group 𝑖. The parameter τ is the relaxation time (Espinosa-Paredes et al., 2011). 

𝜏−1 = 𝑓𝑑  is defined as the transport frequency and is related to the rate of neutron transport 

reactions. The modified point kinetics model essentially consists of not neglecting the time 

derivative for the neutron current density in the equations that eventually lead to the neutron 

diffusion model, i.e., it is a model that modifies the diffusion approximation. 

The point kinetics equations can be deduced in a similar way to the modified kinetics 

equations, as shown by [26] and [30], as long as the additional simplification of neglecting 

the time derivative for the neutron current density is taken into account, which leads to the 
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classic diffusion approximation. If we consider this simplification, the parameter τ becomes 

null, and Eq.1 falls back to the well-known point kinetics equation:  

𝑑𝑛(𝑡)

𝑑𝑡
=

𝜌(𝑡) − 𝛽

Λ
𝑛(𝑡) + ∑𝜆𝑖𝐶𝑖(𝑡)

𝑚

𝑖=1

 (3) 

 

2.2. PCA Method in Modified Point Kinetics 

In [20] the PCA method was proposed to solve the system of coupled ordinary 

differential equations of classical point kinetics, Eqs. 2 and 3. The method approximates the 

source and reactivity functions by piecewise continuous functions, transforming the problem 

into a system of linear ordinary differential equations that can be solved exactly for each time 

step. In order to apply the PCA method to the modified point kinetics equations, Eq. 1 and 

Eq. 2, it is necessary to put these equations into a more convenient form. Initially, the 

following auxiliary term is defined: 

 

𝛬𝑎 = [1 + 𝜏 (
1

𝑙
−

1 − 𝛽

𝛬
)]𝛬 (4) 

 

moreover, substituting it into Eq. 1, we get: 

 

𝜏
𝑑2𝑛(𝑡)

𝑑𝑡2
+

𝛬𝑎

𝛬

𝑑𝑛(𝑡)

𝑑𝑡
=

𝜌(𝑡) − 𝛽

𝛬
𝑛(𝑡) + ∑𝜆𝑖 (𝐶𝑖(𝑡) + 𝜏

𝑑𝐶𝑖(𝑡)

𝑑𝑡
)

𝑚

𝑖=1

. (5) 

 

Making the following change of variables: 
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Substituting (6) into (5): 

 

 

Replacing (2) in (7) to eliminate the term with the derivative of the concentrations of the 

precursor groups: 

 

 

Regrouping the terms of (8), we obtain the system of equations of modified point kinetics 

rewritten similarly to classical point kinetics: 

 

 

𝑑𝐶𝑖(𝑡)

𝑑𝑡
=

𝛽𝑖

𝛬
𝑛(𝑡) − 𝜆𝑖𝐶𝑖(𝑡)     𝑖 = 1, 2,… ,𝑚 . (10) 

 

  

𝑑𝑛(𝑡)

𝑑𝑡
= 𝑦(𝑡). (6) 

𝜏
𝑑𝑦(𝑡)

𝑑𝑡
+

𝛬𝑎

𝛬
𝑦(𝑡) =

𝜌(𝑡) − 𝛽

𝛬
𝑛(𝑡) + ∑𝜆𝑖 (𝐶𝑖(𝑡) + 𝜏

𝑑𝐶𝑖(𝑡)

𝑑𝑡
)

𝑚

𝑖=1

. (7) 

𝜏
𝑑𝑦(𝑡)

𝑑𝑡
+

𝛬𝑎

𝛬
𝑦(𝑡) =

𝜌(𝑡) − 𝛽

𝛬
𝑛(𝑡) + ∑𝜆𝑖 (𝐶𝑖(𝑡) +

𝜏𝛽𝑖

𝛬
𝑛(𝑡) − 𝜏𝜆𝑖𝐶𝑖(𝑡))

𝑚

𝑖=1

. (8) 

𝑑𝑦(𝑡)

𝑑𝑡
= [

𝜌(𝑡) − 𝛽 + 𝜏 ∑ 𝜆𝑖𝛽𝑖
𝑚
𝑖=1

𝜏𝛬
] 𝑛(𝑡) −

𝛬𝑎

𝜏𝛬
𝑦(𝑡) + ∑(

𝜆𝑖 − 𝜏𝜆𝑖
2

𝜏
)

𝑚

𝑖=1

𝐶𝑖(𝑡), 
(9) 



 
 

Martins et al. 

 

 
Brazilian Journal of Radiation Sciences, Rio de Janeiro, 2024, 12(4): 01-22. e2588. 

  p. 8 

 

Put the system of equations (9) and (10) into matrix form: 

𝑑𝒙(𝑡)

𝑑𝑡
= 𝑀(𝑡)𝒙(𝑡), (11) 

𝒙(0) = 𝒙𝟎 .              

 

Where the vector x(t) is defined as: 

 

𝒙(𝑡) = [𝑛(𝑡) 𝑦(𝑡) 𝐶1(𝑡) 𝐶2(𝑡) … 𝐶𝑚(𝑡)]𝑇, 

 

𝑀(𝑡) is the matrix defined as: 

 

𝑀(𝑡) =

[
 
 
 
 
 
 
 
 
 
 
 

0 1 0 0 ⋯ 0

𝜌(𝑡) − 𝛽

𝜏𝛬
+ ∑

𝜆𝑖𝛽𝑖

𝛬

𝑚

𝑖=1

−
𝛬𝑎

𝜏𝛬

𝜆1

𝜏
− 𝜆1

2
𝜆2

𝜏
− 𝜆2

2 ⋯
𝜆𝑚

𝜏
− 𝜆𝑚

2

𝛽1

𝛬
0 −𝜆1 0 ⋯ 0

𝛽2

𝛬
0 0 −𝜆2 … 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝛽𝑚

𝛬
0 0 0 ⋯ −𝜆𝑚 ]

 
 
 
 
 
 
 
 
 
 
 

  , 

 

and 𝒙(0) the initial condition vector: 

 

𝒙(0) = [1
𝜌0

𝛬𝑎

𝛽1

𝜆1𝛬
…

𝛽𝑚

𝜆𝑚𝛬
]
𝑇

. 
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We proceed with the modified point kinetics equation, represented in matrix form, 

Eq. 11, which is similar to point kinetics, as developed by [20]. Piecewise constant functions 

approximate the reactivity function: 

𝜌(𝑡) ≈ 𝜌 (
𝑡𝑖 + 𝑡𝑖+1

2
) = 𝜌𝑖 , 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1  . (12) 

The system of differential equations (11) is transformed into the following approximate system: 

𝑑�̂�

𝑑𝑡
= 𝑀𝑖�̂� , (13) 

with �̂�(𝑡𝑖) = �̂�𝒊 ,  , where 𝒙(𝑡) ≈ �̂�(𝑡). Multiply both sides of the equation by the integrating 

factor 𝑒−(𝑀𝑖)𝑡: 

𝑒−(𝑀𝑖)𝑡
𝑑�̂�

𝑑𝑡
= 𝑒−(𝑀𝑖)𝑡(𝑀𝑖)�̂� ,  

𝑑

𝑑𝑡
(𝑒−(𝑀𝑖)𝑡�̂�) = 0 . (14) 

Integrate the two sides of equation (14) from 𝑡𝑖 to 𝑡𝑖+1, at time step 𝑖: 

∫ 𝑑(𝑒−(𝑀𝑖)𝑡�̂�)
𝑡𝑖+1

𝑡𝑖

= 0 , (15) 

𝑒−(𝑀𝑖)𝑡𝑖+1�̂�𝒊+𝟏 − 𝑒−(𝑀𝑖)𝑡𝑖�̂�𝒊 = 0 . (16) 

Developing equation (16) and making ℎ𝑖 = 𝑡𝑖+1 − 𝑡𝑖 , we arrive at: 

�̂�𝒊+𝟏 = 𝑒𝑀𝑖ℎ𝑖�̂�𝒊 . (17) 
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It is possible to diagonalize the matrix 𝑀𝑖 in such a way as to make the calculation of equation 

(17) more efficient: 

𝑀𝑖 = 𝑋𝑖𝐷𝑖𝑋𝑖
−1, (18) 

where 𝑋𝑖 is the matrix constructed with the eigenvectors of the 𝑀𝑖 matrix, 𝑋𝑖
−1 is its 

respective inverse matrix, and 𝐷𝑖 is the diagonal matrix, whose elements of the main diagonal 

are the eigenvalues associated with the 𝑀𝑖  matrix. The eigenvalues and eigenvectors of the 

𝑀𝑖 matrix of the modified point kinetics can be determined by numerically calculating the 

roots of its respective characteristic polynomial. For the case of 6 groups of precursors, we 

have that: 

𝑑𝑒𝑡

[
 
 
 
 
 
 
 
 
𝑚11 − 𝜆 𝑚12 𝑚13 ⋯ 𝑚18

𝑚21 𝑚22 − 𝜆 𝑚23 ⋯ 𝑚28

𝑚31 𝑚32 𝑚33 − 𝜆 ⋯ 𝑚38

⋮ ⋮ ⋮ ⋱ ⋮

𝑚81 𝑚82 𝑚83 … 𝑚88 − 𝜆]
 
 
 
 
 
 
 
 

= 0 . 

Finally, substituting the decomposition (18) into (17) gives: 

�̂�𝒊+𝟏 = 𝑋𝑖𝑒
𝐷𝑖ℎ𝑖𝑋𝑖

−1�̂�𝒊 . (19) 

Once the matrices 𝑋𝑖 , 𝑋𝑖
−1, and 𝐷𝑖  have been determined, a series of multiplications and 

additions of matrices and vectors is calculated at each time step. 
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3. RESULTS AND DISCUSSIONS 

To implement the PCA method applied to modified point kinetics, a computer code 

called MCP-PCA was developed using Wolfram Mathematica® 6.0 software and, 

specifically, the intrinsic functions “Eigenvalues” and “Eigenvectors” were used to calculate 

the eigenvalues and eigenvectors of the 𝑀𝑖 matrix. The simulations were compared with a 

reference model obtained using the finite difference method applied to modified point 

kinetics, MCP-FD, developed by Nunes, 2015. To generate the results, two types of reactivity 

insertion were considered: case 1, step-type reactivity insertion at three levels (300, 700, and 

800pcm), and case 2, ramp-type reactivity insertion. The nuclear data used were the kinetic 

parameters from [26], shown in Table 1, and the other parameters for six groups of neutron 

precursors, shown in Table 2, widely used in the literature for the fissile isotope U-235, e.g., 

[11]  and [20], among others. For comparison purposes, the simulations were carried out 

with two values of neutron transport frequencies 1/τ equal to 103 𝑠−1 and 

104 𝑠−1 (τ = 10−3𝑠, 10−4𝑠). According to [26], taking into account the available 

experimental results, the range of values for the neutron transport frequency varies from 

103 𝑠−1 to 106 𝑠−1, with more severe transients implying lower values for this parameter. 

For each simulation, the execution time (CPU time) using the Mathematica® software was 

not precisely timed, but we can say that it was around 1 minute. 

3.1. Case 1 - Step-type reactivity insertion 

Three reactivity insertions were considered: prompt-subcritical insertion of 300 𝑝𝑐𝑚, 

prompt-critical insertion of 700 𝑝𝑐𝑚, and prompt-supercritical insertion of 800 𝑝𝑐𝑚. The 

results obtained are shown in Table 3. The time steps, ∆t, used in the MPC-PCA method 

were 0.1 𝑠 for the 300 𝑝𝑐𝑚 insertion and 0.01 𝑠 for the 700 𝑝𝑐𝑚 and 800 𝑝𝑐𝑚 insertions. 

This table lists the results obtained using the finite difference method, MPC-FD [26], with a 

10−6𝑠 time step. The absolute relative percentage deviations between the MPC-PCA and 

MPC-FD methods were also calculated using the equation 
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𝑃𝑅𝐷 = |
𝑛(𝑡)𝑀𝑃𝐶−𝑃𝐶𝐴 − 𝑛(𝑡)𝑀𝑃𝐶−𝐹𝐷

𝑛(𝑡)𝑀𝑃𝐶−𝐹𝐷
| × 100% . (21) 

The deviations calculated using Eq. 21 are shown in Table 4. 

Table 1: Parameters of the modified kinetics for six groups of precursors. 

Parameters Value 

Λ 0.00002 s 

𝛽 = 𝛽1 + 𝛽2 + ⋯+ 𝛽6 0.007 

𝛴𝑎 0.1718 cm-1 

D 10 cm 

v 3×105 cm/s 

𝑓𝑎 

 

 

51,540 s-1 

τ 10-3 s, 10-4 s 

 

Table 2: Precursor group parameters for U-235. 

Precursors 
group 

1 2 3 4 5 6 

𝜆𝑖(𝑠
−1) 0.0127 0.0317 0.115 0.311 1.40 3.87 

𝛽𝑖 0.000266 0.001491 0.001316 0.002849 0.000896 0.000182 

 

For the insertion of prompt-subcritical reactivity of 300 pcm, there is no divergence 

between the MPC-PCA and MPC-FD methods, both for the inverse of the transport 

frequency, relaxation time, for the insertion of prompt-subcritical reactivity of 300 𝑝𝑐𝑚, 

there is no divergence between the MPC-PCA and MPC-FD methods, both for the inverse 

of the  
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Table 3: Neutron population obtained by the MPC-PCA and MPC-FD methods. 

𝜌 = 300 𝑝𝑐𝑚 

Method ∆𝑡(𝑠) 𝜏(𝑠) 𝑡 = 1.0 𝑠 𝑡 = 10 𝑠 𝑡 = 20 𝑠 

MPC-PCA 0.1 10−4 2.20888 8.01333 2.826540 

MPC-PCA 0.1 10−3 2.20012 7.96040 2.797890 

MPC-FD 10−6 10−4 2.20889 8.01328 2.826500 

MPC-FD 10−6 10−3 2.20039 7.96101 2.798070 

𝜌 = 700 𝑝𝑐𝑚 

Method ∆𝑡 (s) 𝜏 (s) 𝑡 = 0.01 𝑠 𝑡 = 0.5 𝑠 𝑡 = 2.0 𝑠 

MPC-PCA 0.01 10−4 3.94994 2.97514×103 2.49744×1010 

MPC-PCA 0.01 10−3 2.21233 2.70710×102 5.62973×106 

MPC-FD 10−6 10−4 3.95463 2.97481×103 2.49504×1010 

MPC-FD 10−6 10−3 2.29174 2.71857×102 5.65158×106 

𝜌 = 800 𝑝𝑐𝑚 

Method ∆𝑡 (s) 𝜏 (s) 𝑡 = 0.01 𝑠 𝑡 = 0.1 𝑠 𝑡 = 1.0 𝑠 

MPC-PCA 0.01 10−4 5.17307 6.12178×102 1.77838×1020 

MPC-PCA 0.01 10−3 2.50318 4.07905×101 2.25472×109 

MPC-FD 10−6 10−4 5.18009 6.11999×102 1.76198×1020 

MPC-FD 10−6 10−3 2.60955 4.13621×101 2.27915×109 

 
  

transport frequency, relaxation time, of 10−3𝑠 and for 10−4𝑠, where the maximum PRD is 

0.01227%. With the insertion of prompt-critical reactivity of 700 𝑝𝑐𝑚, a PRD of 3.46% is 

observed at the initial instant of the transient, 𝑡 = 0.01 𝑠, with 𝜏 = 10−3𝑠. This is not the 

case with 𝜏 = 10−4𝑠, where a PRD of 0.11% was observed. Finally, there is the insertion of 

prompt-supercritical reactivity 800 𝑝𝑐𝑚. Similar behavior is observed in this situation, 

which is even more extreme than the previous one, with a large PRD (4.07618%) at the initial 

instant of the transient, t=0.01 s, with 𝜏 = 10−3𝑠. For the case of 𝜏 = 10−4𝑠, the maximum 

PRD observed (0.93077%) occurs at the end of the transient. The parameter 𝜏 represents 

how much the modified point kinetics model diverges from the classical point kinetics model. 

However, this parameter also has an influence when comparing the results of two different 
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numerical methods, MPC-PCA and MPC-FD, to implement the modified punctual kinetics 

model because, from the analysis in Table 4, regardless of the transient, the type of reactivity 

insertion, there are more significant relative deviations when 𝜏 = 10−3𝑠 compared to the 

deviations for 𝜏 = 10−4𝑠.      

Table 4: Absolute relative percentage deviation between the MPC-PCA and MPC-FD methods. 

𝜌 = 300 𝑝𝑐𝑚 

𝜏 (s) 𝑡 = 1.0 𝑠 𝑡 = 10 𝑠 𝑡 = 20 𝑠 

10−4 0.00045 0.00062 0.00142 

10−3 0.01227 0.00766 0.00643 

𝜌 = 700 𝑝𝑐𝑚 

𝜏 (s) 𝑡 = 0.01 𝑠 𝑡 = 0.5 𝑠 𝑡 = 2.0 𝑠 

10−4 0.11860 0.01109 0.09619 

10−3 3.46505 0.42191 0.38661 

𝜌 = 800 𝑝𝑐𝑚 

𝜏 (s) 𝑡 = 0.01 𝑠 𝑡 = 0.1 𝑠 𝑡 = 1.0 𝑠 

10−4 0.13552 0.02925 0.93077 

10−3 4.07618 1.38194 1.07189 

 

3.2. Case 1 - Ramp-type reactivity insertion 

In this case, a ramp-type reactivity insertion transient was numerically simulated, with 

a speed of $0.1/s, as proposed by [11]: 

𝜌(𝑡) = $0.1𝑡 = 0.0007𝑡 

The kinetic parameters and those of the six precursor groups are identical to those 

used in the transients with step reactivity described in case 1. The simulations are carried out 

with time steps of 0.001 and 0.0001 s to test the sensitivity of the response to this variation. 

The results obtained using the MPC-PCA method are compared with those obtained using 

the MPC-FD method presented by [30]. The solution of classical point kinetics, calculated 

using Henry's θ-weighting method, PC-θ, with ∆t = 0.0001s [11], is also considered for 
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comparison. The variations in the number of neutrons obtained by the methods for the case 

of ∆t = 0.001s are shown in Table 5, while for ∆t = 0.0001s, they are shown in Table 6. The 

relative percentage deviations are listed in Table 7, where the values of the time steps and 

the parameter τ are considered. 

Table 5: Neutron population obtained by the MPC-PCA and MPC-FD methods and PC-𝜃. Ramp-type 

reactivity and step ∆𝑡 = 0.001s. 

Time MPC-PCA MPC-FD PC-𝜃 

 𝜏 = 10−3s 𝜏 = 10−4s 𝜏 = 10−3s 𝜏 = 10−4s  

t = 2s 1.33596 1.33809 1.33583 1.33796 1.3382 

t = 4s 2.21820 2.22774 2.21783 2.22737 2.2283 

t = 6s 5.49652 5.57486 5.49481 5.57311 5.5815 

t = 8s 3.90654×101 4.24043×101 3.90352×101 4.23697×101 4.2781×101 

t = 9s 3.40437×102 4.67905×102 3.39924×102 4.67082×102 4.8745×102 

t = 10s 3.73409×104 2.98746×105 3.72105×104 2.97080×105 4.5109×105 

t = 11s 1.93155×109 5.00610×1014 1.91712×109 4.92958×1014 1.7919×1016 

Table 6: Neutron population obtained by the MPC-PCA and MPC-FD methods and PC-𝜃. Ramp-type 

reactivity and step ∆𝑡 = 0.0001s. 

Time MPC-PCA MPC-FD PC-𝜃 

 𝜏 = 10−3s 𝜏 = 10−4s 𝜏 = 10−3s 𝜏 = 10−4s  

t = 2s 1.33585 1.33798 1.33583 1.33796 1.3382 

t = 4s 2.21787 2.22741 2.21783 2.22737 2.2283 

t = 6s 5.49498 5.57329 5.49481 5.57311 5.5815 

t = 8s 3.90382×101 4.23731×101 3.90352×101 4.236967×101 4.2781×101 

t = 9s 3.39975×102 4.67164×102 3.39923×102 4.670813×102 4.8745×102 

t = 10s 3.72230×104 2.97236×105 3.72100×104 2.97068×105 4.5109×105 

t = 11s 1.91829×109 4.93204×1014 1.91682×109 4.92394×1014 1.7919×1016 

It can be seen from the analysis of the results in Table 7 that the relative percentage 

deviations calculated, even with the more significant step of ∆t = 0.001s, were low at the 

start of the transient, growing progressively with the increase in reactivity inserted, up to 

maximums of 0.75% and 1.55% , at t=11s, for the modified point kinetics with 𝜏 = 10−3s  
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and 𝜏 = 10−4s  respectively. It can be seen that up to 8s, the deviations are very close and 

that from then on, they are more significant for 𝜏 = 10−4s. 

Table 7: Calculate the relative percentage deviation between the MPC-PCA and MPC-FD methods. 

Ramp-type reactivity, ∆𝑡 = 0.001s and ∆𝑡 = 0.0001s. 

Time ∆𝑡 = 0.001s ∆𝑡 = 0.0001s 

 𝜏 = 10−3s 𝜏 = 10−4s 𝜏 = 10−3s 𝜏 = 10−4s 

t = 2s 0.00973 0.00972 0.00150 0.00149 

t = 4s 0.01668 0.01661 0.00180 0.00180 

t = 6s 0.03112 0.03140 0.00309 0.00323 

t = 8s 0.07737 0.08166 0.00774 0.00809 

t = 9s 0.15092 0.17620 0.01530 0.01770 

t = 10s 0.35044 0.56079 0.03494 0.05655 

t = 11s 0.75269 1.55226 0.07669 0.16450 

When the step is reduced to ∆t = 0.0001s, the deviations are reduced by almost an 

order of magnitude, with maximums of 0.077% and 0.164% at t=11s for the modified point 

kinetics with 𝜏 = 10−3s and 𝜏 = 10−4s, respectively. The observed behavior suggests using 

small time steps for transients with large reactivity insertion. It can be seen that from instant 

6s onwards, the deviations are more significant for 𝜏 = 10−4s. 

Figs. 1 and 2 show the graphs for the neutron population as a function of time, 

comparing the classical point kinetics, PC-θ, with the MPC-PCA method with 𝜏 = 10−3s, 

𝜏 = 10−4s and ∆t = 0.0001s. For convenience of visualization, the two graphs are on 

different time scales. 
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Figure 1: Graph of the neutron populations of classical point kinetics, modified point kinetics with 

 𝜏 = 10−3s and 𝜏 = 10−4s . Ramp-type reactivity. 

 

 

Figure 2: Graph of the neutron populations of classical point kinetics, modified point kinetics with 

 𝜏 = 10−3s and 𝜏 = 10−4s . Ramp-type reactivity. 
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It can be seen from the graph in Fig. 1 that the curves for classic point kinetics (black 

curve) and modified point kinetics with 𝜏 = 10−4s (green curve) practically overlap on the time 

scale up to 8s, while modified point kinetics with 𝜏 = 10−3s (red curve) begins to move away 

from the classic point kinetics curve. Considering the graph in Fig. 2, with a time scale starting 

at 8s, the difference between the classical point kinetics and the modified point kinetics models 

can be seen when the reactivity increases to the point where it gets close to the fraction of delayed 

neutrons β = 0.007, and the most significant divergence can be seen for the modified point 

kinetics with 𝜏 = 10−4s. This behavior was expected because as the value of the relaxation time 

τ decreases, the closer the modified point kinetics gets to classical point kinetics.  

4. CONCLUSIONS 

In this work, we set out to apply the PCA method, originally used to solve the classical 

point kinetics equations, to obtain the solution of the modified point kinetics equations for 

six groups of precursors. The modified point kinetics model can be derived from the time-

dependent neutron transport equations and consists of not neglecting the time derivative for 

the neutron current density in the equations that lead to the neutron diffusion model. An 

important parameter that arises with the formulation of the modified point kinetics is the 

relaxation time. If this parameter is null, the modified point kinetics returns to classical point 

kinetics. The PCA method approximates the source and reactivity functions by piecewise 

continuous functions, transforming the problem into a system of linear ordinary differential 

equations that can be solved exactly for each time step. The modified point kinetics equations 

were rewritten conveniently to apply the PCA method. A system of approximate differential 

equations is obtained, and the matrix is diagonalized. Simple matrix and vector operations 

are performed at each time step. The results obtained were compared with a reference, given 

by the finite difference method applied to modified point kinetics to verify the proposed 

application. Two types of transients were considered: step-type reactivity insertion and ramp-
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type reactivity insertion. In the first case, three levels of insertions were tested: prompt-

subcritical, prompt-critical, and prompt-supercritical. For the prompt-subcritical insertion, 

the PCA method showed similar results to the finite difference method, regardless of the 

relaxation time value. In the case of the prompt-critical and prompt-supercritical reactivity 

insertions, the results obtained were similar between the two methods only for the shorter 

relaxation time since for the higher value of this parameter, the results differed between the 

methods, especially in the initial instant of the transient. Both methods showed similar results 

in the initial transient moments in the ramp-type reactivity insertion transient. However, 

from a specific moment onwards, the results began to diverge, with the deviation increasing 

more with time for the case with the shorter relaxation time compared to the case with the 

longer relaxation time. In this transient, we also noticed that the PCA method for the 

modified kinetics presents a first-order truncation error in the temporal discretization. 

Finally, we also compared the proposed method with the classical point kinetics method. We 

found that the proposed method showed consistent behavior when the smallest value of the 

relaxation time is considered. 

We suggest that the methodology proposed in this work be tested on other types of 

more complex transients than those used in cases 1 and 2. We believe this methodology can 

be improved if we consider a complementary method for optimizing the relaxation time 

value. In addition, studies are recommended to verify the possibility of treating the 

discretization in time using an automatic control on the time step size. 

CONFLICT OF INTEREST 

All authors declare that they have no conflicts of interest. 

  



 
 

Martins et al. 

 

 
Brazilian Journal of Radiation Sciences, Rio de Janeiro, 2024, 12(4): 01-22. e2588. 

  p. 20 

 

REFERENCES 

[1] DUDERSTADT, J. J.; HAMILTON, L. J. Nuclear Reactor Analysis. New York, US: 
John Wiley & Sons, 1976. 

[2] BROWN, H.D. A general treatment of flux transients. Nuclear Science and 
Engineering, 2, p. 687-693, 1957. 

[3] AKCASU, Z. General solution of the reactor kinetic equations without feedback. 
Nuclear Science and Engineering, 3, p. 456-467, 1958. 

[4] HANSEN, K.F., Koen, B.V., Little, W.W. Stable numerical solutions of the reactor 
kinetics equations. Nuclear Science and Engineering, 22, p. 51-59, 1965. 

[5] HAYASAKa, H., Takeda, S. Study of neutron wave propagation. Journal of Nuclear 
Science and Technology, 5, p. 564-571, 1968. 

[6] GOLDSTEIN, R., SHOTKIN, L.M. Use of the prompt-jump approximation in fast 
reactor kinetics. Nuclear Science and Engineering, 38, p. 94-103, 1969. 

[7] DA Nobrega, J.A.W. A new solution of the point kinetics equations. Nuclear Science 
and Engineering, 46, p. 366-375, 1971. 

[8] HETRICK, D.L. Dynamics of Nuclear Reactors. Chicago, US: The University of 
Chicago Press, 1971. 

[9] KANG, C.M., HANSEN, K.F. Finite element methods for reactor analysis. Nuclear 
Science and Engineering, 51, p. 456-495, 1973. 

[10] HENNART, J.P. Piecewise polynomial approximations for nuclear reactor point and 
space kinetics. Nuclear Science and Engineering, 64, p. 875-901, 1977. 

[11] CHAO, Y.A., ATTARD, A. A resolution of the stiffness problem of reactor kinetics. 
Nuclear Science and Engineering, 90, p. 40-46, 1985. 

[12] GUPTA, H.P., TRASI, M.S. Asymptotically stable solutions of point-reactor kinetics 
equations in the presence of Newtonian temperature feedback. Annals of Nuclear 
Energy, 4, p. 203-207, 1986. 

[13] SANCHEZ, J. On the numerical solution of the point reactor kinetics equations by 
generalized Runge-Kutta methods. Nuclear Science and Engineering, 103, p. 94–99, 
1989. 



 
 

Martins et al. 

 

 
Brazilian Journal of Radiation Sciences, Rio de Janeiro, 2024, 12(4): 01-22. e2588. 

  p. 21 

 

[14] BEHRINGER, K., PIÑEYRO, J., MENNIG, J. Application of the Wiener-Hermite 
functional method to point reactor kinetics driven by random reactivity fluctuations. 
Annals of Nuclear Energy, 17, 643-656, 1990. 

[15] BUZANO, M.L., CORNO, S.E., CRAVERO, I. A new procedure for integrating the 
point kinetic equations for fission reactors. Computers & Mathematics with 
Applications, 29, p. 5–19, 1995. 

[16] BASKEN, J., LEWINS, J. Power series of the reactor kinetics equations. Nuclear 
Science and Engineering, 122, p. 407-416, 1996. 

[17] KOCLAS, J., SISSAOUI, M.T., HEBERT, A. Solution of the improved and generalized 
quasistatic methods using an analytic calculation or a semi-implicit scheme to compute 
the precursor equations. Annals of Nuclear Energy, 23 (14), p. 1127-1142, 1996. 

[18] HASHIMOTO, K., IKEDA, H., TAKEDA, T. Numerical instability of time-
discretized one-point kinetic equations. Annals of Nuclear Energy, 27, p. 791-803, 
2000. 

[19] ABOANBER, A.E., HAMADA, Y.M. PWS: an efficient code system for solving space-
independent nuclear reactor dynamics. Annals of Nuclear Energy, 29, p. 2159-2172, 
2002. 

[20] KINARD, M., ALLEN, K.E.J. Efficient numerical solution of the point kinetics 
equations in nuclear reactor dynamics. Annals of Nuclear Energy, 31, p. 1039-1051, 
2004. 

[21] HAYES, J.G., ALLEN, E.J. Stochastic point-kinetics equations in nuclear reactor 
dynamics. Annals of Nuclear Energy, 32, p. 572-587, 2005. 

[22] DULLA, S., NICOLINO, C., RAVETTO, P. Reactivity oscillation in source driven 
systems. Nuclear Engineering and Technology, 38, p. 657-664, 2006. 

[23] CHEN, W.Z., GUO, L.F., ZHU, B., LI, H. Accuracy of analytical methods for 
obtaining supercritical transients with temperature feedback. Progress in Nuclear 
Energy, 49, p. 290-302, 2007. 

[24] NAHLA, A.A. Analytical solution to solve the point reactor kinetics equations. 
Nuclear Engineering and Design, 240, p. 1622-1629, 2010. 

[25] ESPINOSA-PAREDES, G., POLO-LABARRIOS, M., ESPINOSA-MARTINEZ, E., 
VALLE-GALLEGOS, E. Fractional neutron point kinetics equations for nuclear 
reactor dynamics. Annals of Nuclear Energy, 38, p. 307-330, 2011. 



 
 

Martins et al. 

 

 
Brazilian Journal of Radiation Sciences, Rio de Janeiro, 2024, 12(4): 01-22. e2588. 

  p. 22 

 

[26] NUNES, A. L. A Influência da Aproximação Referente à Derivada da Corrente de 
Nêutrons nas Equações da Cinética Pontual. Tese de D.Sc., COPPE/UFRJ, Rio de 
Janeiro, RJ, Brazil, 2015. 

[27] ALTAHHAN, M.R., NAGY, M.S., ABOU-GABAL, H.H., ABOANBER, A.A. 
Formulation of a point kinetics model based on the neutron telegraph equation. Annals 
of Nuclear Energy, 91, p. 176–188, 2016. 

[28] ESPINOSA-PAREDES, G. Fractional-space neutron point kinetics (F-SNPK) 
equations for nuclear reactor dynamics. Annals of Nuclear Energy, 107, p. 136-143, 
2017. 

[29] HAMADA, Y.M. Modified fractional neutron point kinetics equations for finite and 
infinite medium of bar reactor core. Annals of Nuclear Energy,  106, p. 118-126, 
2017. 

[30] DINIZ, R.C., GONÇALVES, A.C., DA ROSA, F.S.S. Adjusted mean generation time 
parameter in the neutron point kinetics equations. Annals of Nuclear Energy, 133, p. 
338-346, 2019. 

 

 

LICENSE 

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third-party material in this article are included in the article’s 
Creative Commons license, unless indicated otherwise in a credit line to the material.  
To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/. 
 


