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Abstract: In this paper, we are proposing a generalized analytical solution to the point 
reactor kinetics equations for six groups of delayed neutron precursors for both 
conventional and subcritical equations. The methodology presented aims to obtain an 
analytical solution using the similarity transformation technique. This solution will make 
it possible to evaluate the behavior of the nuclear reactor power as a function of time, for 
a given constant reactivity inserted in the reactor core, in a very simple way and without 
computational effort, compared to numerical solutions. The results obtained will be 
compared with reference methods to validate the methodology presented in this paper.  
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Cinética Pontual de Reatores 
Generalizada 

Resumo: Neste artigo, propomos uma solução analítica generalizada para as equações da 
cinética pontual de reatores para seis grupos de precursores de nêutrons atrasados tanto 
para as equações convencionais quanto para as equações subcríticas. A metodologia 
apresentada visa a obtenção de uma solução analítica usando técnica de transformação de 
similaridade. Esta solução permitirá avaliar o comportamento da potência do reator 
nuclear em função do tempo, para uma dada reatividade constante inserida no núcleo do 
reator, de forma bastante simples e sem esforço computacional, em comparação com as 
soluções numéricas. Os resultados obtidos serão comparados com os métodos de 
referência para validar a metodologia apresentada neste artigo.  

Palavras-chave: cinética pontual de reatores, potência do reator; solução analítica, 
equações convencional e subcrítica, transformação de similaridade. 
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1. INTRODUCTION  

The point reactor kinetics equations [1,2,3] are set of seven linear time-depend 

differential equations, in which the only parameter that depends on time is reactivity, 𝜌(𝑡). 

These equations make it possible to evaluate the behavior of nuclear power, 𝑃(𝑡), as well as 

delay neutron precursor concentrations, 𝐶𝑖(𝑡), under different conditions, such as: fast 

transients as a result of a given reactivity insertion in the reactor core, such as the movement 

or fall of control rods in the reactor core. With this, it is possible to evaluate the reactor’s 

power behavior as a function of time, for normal operation, transients and even accidents. 

The analysis of the temporal behavior of power, 𝑃(𝑡), is of vital importance, because 

allows to evaluate the growth of the neutron population in short or long-time intervals, i.e., 

in fast transients, as well as predicting possible accidents due to sudden changes in the 

multiplication of neutrons in the reactor. It is worth remembering that these equations can 

also be used to evaluate possible postulated accidents, the aim of which is to understand the 

limits of insertion of reactivity into the reactor core that could compromise its integrity. 

Since these are analytical solutions, the computational effort required to carry out 

different simulations is reduced to zero when compared to the numerical solutions 

implemented to solve the same problem with a time step of the order of the lifetime of the 

ready neutrons, 𝑙𝑝, i.e., ∆𝑡 = 10−4𝑠. The results obtained in this paper will be compared 

with those found in the literature to validate this proposal. 
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2. GENERALIZED POINT REACTOR KINETICS EQUATIONS  

The generalized point reactor kinetics equations, for six groups of neutron precursors, 

including the external source term, are given by: 

 ⅆ

ⅆ𝑡
𝑃(𝑡) = 𝛾𝑃(𝑡) +∑�̃�𝑖𝐶𝑖(𝑡)

6

𝑖=1

+ 𝑄 (1) 

 ⅆ

ⅆ𝑡
𝐶𝑖(𝑡) = 𝜉𝑖𝑃(𝑡) − �̂�𝑖𝐶𝑖(𝑡),         𝑖 = 1,… , 6, (2) 

where 𝛾, �̃�𝑖, �̂�𝑖 and 𝜉𝑖 are the kinetic parameters calculated for each type of system of interest, 

𝑃(𝑡) is the power, 𝐶𝑖(𝑡), the 𝑖-th term of the neutron precursor concentration and 𝑄 the 

external source. For the conventional equations, the external source term is zero. 

Thus, the Eqs. (1) and (2) in the matrix form are: 

 

ⅆ

ⅆ𝑡

(

 
 
 
 
 

𝑃(𝑡)
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𝐶1(𝑡)

𝐶2(𝑡)

𝐶3(𝑡)

𝐶4(𝑡)
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⏞      
𝑷(𝑡)

+

(

 
 
 
 
 

𝑄

)

 
 
 
 
 

⏞  
𝑸

. 
(3) 

As we can see, the point reactor kinetics equations constitute a system of 7 ordinary 

differential equations whose kinetic parameters, in this case, are constant. Rewriting the Eq. 

(3) using matrix notations, we get 

 ⅆ

ⅆ𝑡
𝑷(𝑡) = 𝑴𝑷(𝑡) + 𝑸, (4) 

where 𝑷(𝑡) is a vector containing the power and concentration of neutron precursors, 𝑴 

the matrix with the kinetic parameters and 𝑸 a vector with the external source. 
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To solve this system of equations, we can assume that the general solution [4] is a linear 

combination of a particular solution combined with a homogeneous solution, such that  

 𝑷(𝑡) = 𝑷ℎ𝑜𝑚(𝑡) + 𝑷𝑝𝑎𝑟𝑡(𝑡). (5) 

According to the techniques for solving ordinary differential equations, the particular 

solution has the form of the external source. In this case, as the source is constant, we can 

assume that 𝑷𝑝𝑎𝑟𝑡(𝑡) = 𝑷𝑝𝑎𝑟𝑡. Therefore, we have 

 ⅆ

ⅆ𝑡
𝑷𝑝𝑎𝑟𝑡 = 0,  

so, we have 

 𝑷𝑝𝑎𝑟𝑡 = −𝑴−1𝑸, (6) 

where 𝑴−1 is the inverse of the kinetic parameter matrix. 

We will now turn our attention to the homogeneous solution such that: 

 ⅆ

ⅆ𝑡
𝑷ℎ𝑜𝑚(𝑡) = 𝑴𝑷ℎ𝑜𝑚(𝑡). (7) 

We can decouple the system of equations given by Eq. (7) using the Similarity 

Transformation [5,6]. To do this, let’s assume that 𝑃ℎ𝑜𝑚(𝑡) is expressed by the product of a 

matrix 𝐓7𝑥7, whose columns are the eigenvectors of the matrix 𝐌7𝑥7, by a column vector 

𝒑(𝑡). Thus, we have 

 𝑷ℎ𝑜𝑚(𝑡) = 𝐓𝒑(𝑡). (8) 

 Substituting Eq. (8) into (7), we get 

 ⅆ

ⅆ𝑡
(𝐓𝒑(𝑡)) = 𝑴(𝐓𝒑(𝑡))    ∴    𝐓

ⅆ

ⅆ𝑡
𝒑(𝑡) = 𝑴𝐓𝒑(𝒕),  

and multiplying this result by the inverse matrix of eigenvectors, it follows that 
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𝐓−𝟏𝐓

ⅆ

ⅆ𝑡
𝒑(𝑡) = 𝐓−𝟏𝑴𝐓𝒑(𝑡),  

where 𝐓−𝟏𝐓 = 𝐈, i.e., the identity matrix and 𝐓−𝟏𝑴𝐓 = diag(𝜆𝑗) is a well-known relation 

associated with eigenvalue end eigenvector problems, where diag(𝜆𝑗) is a diagonal matrix 

containing the eigenvalues of the 𝑴 matrix. This calculation allows the equations to be 

decoupled, so that: 

 ⅆ

ⅆ𝑡
𝑝𝑗(𝑡) = 𝜆𝑗𝑝𝑗(𝑡),      𝑗 = 1,… ,7, (9) 

whose solution to Eq. (9) is well known in the literature and is given by 

 𝑝𝑗(𝑡) = 𝑎𝑗𝑒
𝜆𝑗𝑡 ,     𝑗 = 1,… ,7. (10) 

As a result, the homogeneous solution becomes 

 𝑷ℎ𝑜𝑚(𝑡) = 𝐓𝒑(𝑡), (11) 

where, in matrix form, we have that 

 

(

 
 
 
 
 
 

𝑃1
ℎ𝑜𝑚(𝑡)

𝑃2
ℎ𝑜𝑚(𝑡)

𝑃3
ℎ𝑜𝑚(𝑡)

𝑃4
ℎ𝑜𝑚(𝑡)

𝑃5
ℎ𝑜𝑚(𝑡)

𝑃6
ℎ𝑜𝑚(𝑡)

𝑃7
ℎ𝑜𝑚(𝑡))

 
 
 
 
 
 

=

(

 
 
 
 

𝑇11
𝑇21
𝑇31
𝑇41
𝑇51
𝑇61
𝑇71

𝑇12
𝑇22
𝑇32
𝑇42
𝑇52
𝑇62
𝑇72

𝑇13
𝑇23
𝑇33
𝑇43
𝑇53
𝑇63
𝑇73

𝑇14
𝑇24
𝑇34
𝑇44
𝑇54
𝑇64
𝑇74

𝑇15
𝑇25
𝑇35
𝑇45
𝑇55
𝑇65
𝑇75

𝑇16
𝑇26
𝑇36
𝑇46
𝑇56
𝑇66
𝑇76

𝑇17
𝑇27
𝑇37
𝑇47
𝑇57
𝑇67
𝑇77)

 
 
 
 

(

 
 
 
 
 

𝑝1(𝑡)

𝑝2(𝑡)

𝑝3(𝑡)

𝑝4(𝑡)

𝑝5(𝑡)

𝑝6(𝑡)

𝑝7(𝑡))

 
 
 
 
 

. (12) 

  

Substituting Eq. (10) into (12), we get 
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑃1
ℎ𝑜𝑚(𝑡) =∑𝑇1𝑗𝑎𝑗ⅇ

𝜆𝑗𝑡

7

𝑗=1

𝑃2
ℎ𝑜𝑚(𝑡) =∑𝑇2𝑗𝑎𝑗ⅇ

𝜆𝑗𝑡

7

𝑗=1

𝑃3
ℎ𝑜𝑚(𝑡) =∑𝑇3𝑗𝑎𝑗ⅇ

𝜆𝑗𝑡

7

𝑗=1

𝑃4
ℎ𝑜𝑚(𝑡) =∑𝑇4𝑗𝑎𝑗ⅇ

𝜆𝑗𝑡

7

𝑗=1

𝑃5
ℎ𝑜𝑚(𝑡) =∑𝑇5𝑗𝑎𝑗ⅇ

𝜆𝑗𝑡

7

𝑗=1

𝑃6
ℎ𝑜𝑚(𝑡) =∑𝑇6𝑗𝑎𝑗ⅇ

𝜆𝑗𝑡

7

𝑗=1

𝑃7
ℎ𝑜𝑚(𝑡) =∑𝑇7𝑗𝑎𝑗ⅇ

𝜆𝑗𝑡

7

𝑗=1 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. (13) 

 Therefore, we have the general solution of Eq. (5), 

 𝑷(𝑡) = 𝑷ℎ𝑜𝑚(𝑡) + 𝑷𝑝𝑎𝑟𝑡 , (14) 

Using the initial condition of the problem, we can set up a system of equations and 

calculate the coefficients 𝑎𝑗 , 𝑗 = 1,… ,7. The initial condition of the problem is such that 

𝑃(0) = 𝑃0 and 𝐶𝑖(0) =
𝜉𝑖𝑃0

�̃�𝑖
, with i = 1,… , 6. This solution can be applied to both 

conventional and subcritical equations.  
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3. NUMERICAL RESULTS AND DISCUSSIONS 

In this section we will make some applications using the generalized point reactor 

kinetics equations. Before presenting the results obtained, we will validate the results 

obtained in both cases. 

3.1. Conventional Point Reactor Kinetics Equations 

The first analysis of results consists of evaluating the behavior of the power for some 

constant reactivity values inserted in the reactor core. In this case, the external neutron source 

term is null and the kinetic parameters of Eq. (1) and (2) are defined in such a way as to obtain 

the conventional point reactor kinetic equations for six groups of neutron precursors [7]:  

 ⅆ

ⅆ𝑡
𝑃(𝑡) = (

𝜌𝑜 − 𝛽

𝛬
)𝑃(𝑡) +∑𝜆𝑖𝐶𝑖(𝑡)

6

𝑖=1

 (15) 

 ⅆ

ⅆ𝑡
𝐶𝑖(𝑡) =

𝛽𝑖
𝛬
𝑃(𝑡) − 𝜆𝑖𝐶𝑖(𝑡),         𝑖 = 1,… , 6. (16) 

such that 

 𝛾 ≡
𝜌𝑜 − 𝛽

𝛬
, (17) 

 𝜉𝑖 ≡
𝛽𝑖
𝛬
, (18) 

 �̃�𝑖 ≡ 𝜆𝑖 , (19) 

 �̂�𝑖 ≡ 𝜆𝑖 , (20) 

 𝑄 = 0, (21) 

where 𝜌𝑜 is the reactivity, 𝛽 the total fraction of delayed neutrons, 𝛬 the average neutron 

generation time, 𝛽𝑖 the 𝑖-th delayed neutron fraction term, 𝜆𝑖 the 𝑖-th decay constant term 

and  𝑄 the external neutron source term. 
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The kinetic parameters are such that [8]: 𝛬 (𝑠) = 0.00002, 𝛽 = 0.007, 𝛽1 =

0.000266,  𝛽2 = 0.001491,  𝛽3 = 0.001316,  𝛽4 =  0.002849,  𝛽5 =  0.000896,  𝛽6 =  0.000182,

𝜆1 (𝑠
−1) = 0.0127,  𝜆2 (𝑠

−1) =  0.0317,  𝜆3 (𝑠
−1) = 0.115,  𝜆4 (𝑠

−1) =  0.311, 𝜆5 (𝑠
−1) =  1.4 e 

𝜆6 (𝑠
−1) = 3.87. The initial condition of the problem is such that: 𝑃(0) = 1 and 𝐶𝑖(0) =

𝛽𝑖

𝛬𝜆𝑖
, 

with i = 1,… , 6. 

Tables 1 and 2 present the results obtained for reactor power for some reactivity 

values, such that reference values presented were obtained using the Finite Difference 

Method [8], as well the relative error, define by: 

 
𝜖(%) = |

𝑃𝑅𝑒𝑓 − 𝑃𝐺𝑒𝑛
𝑃𝑅𝑒𝑓

| × 100. 
(22) 

Table 1 : Power, 𝑃(𝑡), for reactivity, 𝜌𝑜 = 0.003, for Conventional Kinetics. 

Time (s) Generalized Kinetics Reference [8] 𝝐(%) 

1 2.2098 2.2098 0% 

10 8.0192 8.0192 0% 

20 2.8297x10¹ 2.8297x10¹ 0% 

Table 2 : Power, 𝑃(𝑡), for reactivity, 𝜌𝑜 = 0.007, for Conventional Kinetics. 

Time (s) Generalized Kinetics Reference [8] 𝝐(%) 

0.01 4.5088 4.5088 0% 

0.5 5.3457x103 5.3457x103 0% 

2 2.0589x1011 2.0589x1011 0% 

As we can see, the numerical results shown in tables 1 and 2 are accurate. Another 

point to highlight is that to obtain the results using analytical modeling, only a single 

calculation is performed at the desire time. To illustrate, the reference results presented in 

tables 1 and 2 were obtained with a time step of 10−6s. So, to simulate a time of 1s, 1 million 

calculations are needed, that is, the point kinetics equations are solved 1 million times to 

simulate a time instant of 1s. This is one of the great advantages of using analytical solutions 

when they are possible to obtain. 
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3.2. Subcritical Point Reactor Kinetics Equations 

For subcritical systems, we can validate Eqs. (1) and (2) as a function of the contribution 

of the external source term, in order to compensate for the reactivity inserted in the reactor 

core. To do this, let’s assume that the rate of change of the power and precursor concentration 

are zero at 𝑡 = 0. Therefore, the external source term can be defined as follows: 

 

𝑄 ≡ −𝑃(0)(𝛾 +∑𝜉𝑖

6

𝑖=1

). (23) 

 If we use the definitions of reactor kinetics parameters in Eqs. (17) and (18), we obtain 

the following equation: 

 𝑄 = −
𝜌𝑜
𝛬
𝑃(0), (24) 

where due the negative sign in Eq. (24), the external source term will contribute in the 

opposite direction to the reactivity insertion, such that: If 𝜌𝑜 < 0, the external source, 𝑄, will 

be positive, helping to compensate for the negative reactivity and keep the power constant. 

If 𝜌𝑜 = 0, the external source, 𝑄, will also be zero and the power will remain constant over 

time.  If 𝜌𝑜 > 0, external source, 𝑄, will be negative, preventing the power from increasing 

due to the reactivity being positive, as shown in Figure 1. 

Figure 1: Power, 𝑃(𝑡), constant for different reactivity values, 𝜌𝑜. 
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 The results shown in Figure 1 were obtained using kinetic parameters presented in 

section 3.1 and the same initial condition. 

3.3. Models proposed by Gandini, Dulla and Gonçalves 

With the emergence of ADS-type reactor designs, new models based on point reactor 

kinetics have been proposed to suit this type of reactor, which combines the subcritical core 

of a nuclear reactor with a particle accelerator that emits a beam of protons in a spallation 

source to produce neutrons. This combination (reactor + particle accelerator) has interesting 

characteristics from the point of view safety and waste management, as it has a high power 

to transmute materials from high activity to low activity [9,10] and due to its subcritical core, 

this reactor is inherently safe. The MYRRHA reactor [11], the first ADS-type reactor, is 

expected to start operating in 2026. In this sense, different models for the point kinetics of 

reactors have been developed over the years, such as: Gandini [9], Dulla [12], Nishihara [13], 

Silva [14] and Gonçalves [15] among others. The main difference in obtaining these models 

is in the definitions of the importance function with the levels of subcriticality and with the 

external neutron source term. 

The Eqs. (25) and (26), represent a generalization of the models proposed by Gandini 

[9], Dulla [12] and Gonçalves [15], where the main difference is associated with the importance 

function that is used the calculations of the subcritical kinetic parameters, such that:  

 

𝛬
ⅆ

ⅆ𝑡
𝑃(𝑡) = (𝜌𝑜 − 𝛽 + Γ)𝑃(𝑡) +∑𝜆𝑖𝐶𝑖(𝑡) + 𝑞

6

𝑖=1

 (25) 

 ⅆ

ⅆ𝑡
𝐶𝑖(𝑡) = 𝛽𝑖𝑃(𝑡) − 𝜆𝑖𝐶𝑖(𝑡),         𝑖 = 1,… , 6. (26) 

such that 

𝛾 ≡
𝜌𝑜 − 𝛽 + Γ

𝛬
, (27) 
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𝜉𝑖 ≡ 𝛽𝑖 , (28) 

�̃�𝑖 ≡
𝜆𝑖
𝛬
, 

�̂�𝑖  ≡ 𝜆𝑖 , 

(29) 

𝑄 ≡
𝑞

𝛬
. (30) 

Using the initial condition of the problem, such that: 𝑃(0) = 1 and 𝐶𝑖(0) =
𝛽𝑖

𝜆𝑖
, with 

𝑖 = 1,… , 6 and the kinetic parameters in Tables 3 and 4, under different conditions of 

subcriticality, we can evaluate the behavior of the reactor’s power over time, as shown in 

Figures 2 and 3. In these example cases, we can see that the power varies rapidly with time 

and then shows asymptotic behavior. Subcritical reactivity is calculated as follows: 

 
𝜌𝑜 = 1 −

1

𝑘𝑒𝑓𝑓
 (31) 

Table 3 : Kinetic parameters obtained for the effective multiplication factor, 𝑘𝑒𝑓𝑓 = 0.95. 

Parameters Dulla  Gandini Gonçalves 

Λ 1.58243x10-3 1.58284x10-3 1.59587x10-3 

Γ -4.96486x10-2 -4.96521x10-2 -5.25452x10-2 

Q 4.96485x10-2 4.96521x10-2 5.25452x10-2 

𝛽1 2.49544x10-4 2.49599x10-4 2.49692x10-4 

𝛽2 1.39832x10-3 1.39861x10-3 1.39911x10-3 

𝛽3 1.23527x10-3 1.23556x10-3 1.23604x10-3 

𝛽4 2.66929x10-3 2.66980x10-3 2.67064x10-3 

𝛽5 8.39949x10-4 8.40121x10-4 8.40406x10-4 

𝛽6 1.70852x10-4 1.70616x10-4 1.70673x10-4 

𝛽 6.56296x10-3 6.56431x10-3 6.56656x10-3 
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Table 4 : Kinetic parameters obtained for the effective multiplication factor, 𝑘𝑒𝑓𝑓 = 0.98. 

Parameters Dulla  Gandini Gonçalves 

Λ 1.52602x10-3 1.52618x10-3 1.52969x10-3 

Γ -1.98505x10-2 -1.98512x10-2 -2.03282x10-2 

Q 1.98505x10-2 1.98512x10-2 2.03282x10-2 

𝛽1 2.49724x10-4 2.49746x10-4 2.49725x10-4 

𝛽2 1.39926x10-3 1.39938x10-3 1.39927x10-3 

𝛽3 1.23620x10-3 1.23631x10-3 1.23620x10-3 

𝛽4 2.67093x10-3 2.67113x10-3 2.67094x10-3 

𝛽5 8.40504x10-4 8.40572x10-4 8.40507x10-4 

𝛽6 1.70692x10-4 1.70706x10-4 1.70693x10-4 

𝛽 6.56730x10-3 6.56784x10-3 6.56733x10-3 

 

We can see in Tables 3 and 4 that the kinetic parameters obtained by Dulla and 

Gandini show small deviations each other. As a consequence, we have the superimposed 

graphs for 𝑃(𝑡) in Figures 2 and 3. The deviations shown in Figures 2 and 3 by Gonçalves 

are mainly associated with the values obtained for the kinetic parameters: Λ, Γ and the source 

term, 𝑄, as they were taken from Tables 3 and 4. Another point to note is that these 

deviations decrease as we approach criticality. 

Figure 2: Power, 𝑃(𝑡), for the effective multiplication factor, 𝑘𝑒𝑓𝑓 = 0.95. 
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Figure 3: Power, 𝑃(𝑡), for the effective multiplication factor, 𝑘𝑒𝑓𝑓 = 0.98. 

 

It should be noted that the process of validating the subcritical kinetics presented in 

section 3.2 can be applied to this section. We can use Eq. (23) to define the external source 

term that will compensate for the reactivity insert/removed in the reactor core. Take based 

on Eqs. (25) and (26), we have that: 𝛾 =
𝜌𝑜−𝛽+Γ

𝛬
 and 𝜉𝑖 = 𝛽𝑖. Substituting these relations in 

Eq. (23), the external sources becomes: 

 𝑄 = −(𝜌𝑜 + Γ )𝑃(0), (32) 

where the kinetic parameter Γcontributes together with the subcritical reactivity, 𝜌𝑜, in the 

definition of external source term. Therefore, unlike Eq. (24), even if the reactivity is zero, 

the external source term will not be zero. 
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4. CONCLUSIONS 

The main objective of this paper was to develop a generalized analytical solution for 

the point reactor kinetics equations for six groups of neutron precursors for both the 

conventional and subcritical equations. The methodology used was based on concepts 

involving analytical solutions of ordinary differential equations and the similarity 

transformation technique.  

The results obtained from the generalized point reactor kinetics equations for different 

kinetics parameters as well as for different reactivity values were presented. In this way, we 

compared and validated the results with reference values, according Tables 1 and 2. Other 

results involving the modeling proposed by Gandini, Dulla and Gonçalves are shown in 

Figures 2 and 3, using the kinetic parameters in tables 3 and 4, respectively. 

The results presented in this paper show the feasibility of using generalized point 

reactor kinetics to evaluate the behavior of the reactor power as a function of time, for a 

given constant reactivity inserted/removed in the reactor core, in a very simple way and 

without computational effort, compared to the numerical solutions. Another point in that 

this modeling can be applied to both the conventional and subcritical equations. 
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