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Abstract: A semi-analytical nodal methodology is described in this paper for obtaining 
the numerical solution of eigenvalue problems based on neutron transport theory, in slab 
geometry, with isotropic scattering, using the discrete ordinates and multigroup energy 
formulation. This new approach applies a quadratic polynomial approximation only to 
the fission term in the transport equation, which justifies the method being classified as 
semi-analytical. The numerical solution is obtained through two interconnected iterative 
processes: the outer iterative process, which uses the power method to obtain successive 

estimates for the fission source and the effective multiplication factor (𝑘𝑒𝑓𝑓), and the 

internal iterative process, which aims to obtain successive estimates of the angular neutron 
fluxes emerging from the homogeneous regions throughout the spatial domain. Once the 
eigenvalues are calculated, for each outer power iteration, the angular fluxes of neutrons 
emerging at the node faces and in the sweeping direction of the internal iterative process 
are estimated. These are incoming fluxes at the faces of adjacent nodes, which ensures the 
continuity of the numerical solution. Computational algorithms were implemented in 

MATLAB. Numerical results for a typical benchmark problem considering an ADS, c.f., 

Accelerator-Driven Subcritical Reactor, type model are provided to illustrate the accuracy 
of the converged numerical solutions in coarse-mesh calculations. Although the method 
is not free from spatial truncation error, the results for the benchmark problem were 
considered satisfactory with one node per region, and refining the spatial domain did not 
result in a high computational cost in terms of response time, with results approaching 
those of analytical solutions. 

Keywords: Neutron transport equation, Multigroup energy formulation, Nodal 
methodology, Quadratic approximation. 

https://crossmark.crossref.org/dialog/?doi=10.15392/2319-0612.2025.2940&domain=pdf&date_stamp=2025-10-03
https://orcid.org/0000-0002-8805-8981
mailto:nrpinheiro@uesc.br
https://orcid.org/0000-0002-9847-7290
https://orcid.org/0000-0001-6905-0039


doi.org/10.15392/2319-0612.2025.2940 
Braz. J. Radiat. Sci., Rio de Janeiro 

2025, 13(4) | 01-20 | e2940  
Editor: Prof. Dr. Bernardo Maranhão Dantas 

Editor: Prof. Dr. Alfredo Lopes Ferreira Filho 
Submitted: 2025-05-19 

Accepted: 2025-08-06 

 

 
 

 

 

Desenvolvimento de uma metodologia 
nodal semi-analítica para problemas 
unidimensionais de autovalor baseado 
na teoria de transporte multigrupo de 
nêutrons usando a formulação das 
ordenadas discretas 

Resumo: Uma metodologia nodal semi-analítica é descrita neste artigo para a obtenção 
da solução numérica de problemas de autovalor baseada na teoria de transporte de 
nêutrons, em geometria slab, com espalhamento isotrópico, usando a formulação das 
ordenadas discretas e multigrupo de energia. Esta nova proposta faz uma aproximação 
polinomial quadrática apenas no termo de fissão da equação de transporte, o que justifica 
o método ser semi-analítico. A solução numérica é obtida por meio de dois processos 
iterativos interligados: o processo iterativo externo, que utiliza o método das potências 
para obter sucessivas estimativas para a fonte de fissão e o fator de multiplicação efetivo 

(𝑘𝑒𝑓𝑓), e o processo iterativo interno, que visa obter sucessivas estimativas dos fluxos 

angulares de nêutrons emergentes das regiões homogêneas em todo domínio espacial. 
Uma vez calculados os autovalores, para cada iteração externa de potência estima-se os 
fluxos angulares emergentes nas faces dos nodos e na direção da varredura do processo 
iterativo interno. Estes são os fluxos incidentes nas faces dos nodos adjacentes, o que 
garante a continuidade da solução numérica. Os algoritmos computacionais foram 
implementados em linguagem MATLAB. Resultados numéricos para um problema de 

benchmark típico, considerando um modelo do tipo ADS, c.f., Accelerator-Driven 

Subcritical Reactor, são fornecidos para ilustrar a precisão das soluções numéricas 
convergidas em cálculos de malha grossa. Apesar do método não ser livre de erro de 
truncamento espacial, os resultados do problema de benchmark foram considerados 
satisfatórios com um nodo por região e o refinamento do domínio espacial não demandou 
alto custo computacional no que tange o tempo de resposta, aproximando seus resultados 
aos das soluções analíticas.  

Palavras-chave: Equação de transporte de nêutrons, Formulação multigrupo de energia, 
Metodologia nodal, Aproximação quadrática. 
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1. INTRODUCTION 

Traditional deterministic numerical methods, whether fine-mesh (Diamond 

Difference method) [1], or coarse-mesh (nodal methods) [2,3], play a fundamental role in the 

calculations of the effective multiplication factor (𝑘𝑒𝑓𝑓) and the power distribution in a 

nuclear reactor. 

Barros and Larsen [4] developed a spectronodal (coarse-mesh) method for neutron 

shielding problems (fixed-source) where, in one-dimensional calculations, the scattering and 

fission terms of the intranodal 𝑆𝑁 equations were treated without approximations. The 

method was called SGF, c.f., Spectral Green´s Function. The iterative scheme NBI [4], c.f., 

One-Node Block Inversion, used in the internal iterations of the iterative process, was also 

developed and presented, and its results were compared with the traditional SI scheme, cf. 

Source Iteration [1]. The NBI scheme, despite being more expensive from the point of view 

of computational memory, presents a higher convergence speed than the SI scheme in coarse 

mesh calculations. 

Abreu [5] developed a spectronodal method which was applied to neutron criticality 

(eigenvalue) problems, considering one-dimensional spatial domains and multigroup 

energy formulation. The method was called SD-SGF, c.f., spectral diamond-spectral 

Green’s function, and represented a significant advance in the development of this type of 

numerical approach. 

Recently, Ramirez [6], following this same approach, proposed two spectronodal 

methodologies that were tested in criticality problems. The Analytical Spectral-Nodal 

Method (ASNM) and Analytical Spectral-Nodal Method-Source Iteration (ASNM-SI) 

methods were developed. The numerical results obtained with these methods were compared 

with the DD method [1] and the SD-SGF method [5]. 
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In this paper, we present and develop a new nodal methodology, which makes a 

quadratic polynomial approximation in the fission term and considers the scattering term 

without approximations in global nuclear reactor problems, considering one-dimensional 

spatial domains. The numerical results were compared with the results obtained by the DD 

fine-mesh method. We obtained satisfactory results for 1 node per region, and the refinement 

did not demand high computational cost in terms of response time. This paper was divided 

as follows: in section 2, the entire mathematical modeling of the proposed methodology is 

developed, in section 3 the numerical results of the model-problem considered are presented 

and in section 4 the final considerations and future perspectives are presented. 

2. SEMI-ANALYTICAL NODAL METHODOLOGY 

2.1. Mathematical modeling 

The equation that models neutron transport in a one-dimensional domain D of length 

H (Fig. 1), in slab geometry, stationary condition, with isotropic scattering, in multiplicative 

media, in the discrete ordinate formulation 𝑆𝑁 and in the multigroup energy formulation is 

given by  

 
𝜇𝑚

𝑑

𝑑𝑥
𝜓𝑔,𝑚(𝑥) + 𝜎𝑡,𝑔(𝑥)𝜓𝑔,𝑚(𝑥)

=
𝜒𝑔
2𝑘𝑒𝑓𝑓

∑ 𝜈𝜎𝑓𝑔′(𝑥)

𝐺

𝑔′=1

∑𝜔𝑛𝜓𝑔′,𝑛(𝑥)

𝑁

𝑛=1

+
1

2
∑ 𝜎𝑠

𝑔′→𝑔(𝑥)∑𝜔𝑛𝜓𝑔′,𝑛(𝑥),

𝑁

𝑛=1

𝐺

𝑔′=1

 

 

(1) 

with 𝑚 = 1:𝑁, 𝑔 = 1: 𝐺 and 0 ≤ 𝑥 ≤ 𝐻, where 𝜓𝑔,𝑚(𝑥) ≡ 𝜓𝑔(𝑥, 𝜇𝑚). 
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In Equation (1), the dependent variable 𝜓𝑔,𝑚(𝑥) represents the angular neutron flux. 

The discrete values 𝜇𝑚 are the roots of the Legendre polynomials of degree N, the quadrature 

weights 𝜔𝑛 are such that they exactly integrate the Legendre polynomials of degree 0 to N-

1, 𝜎𝑡,𝑔(𝑥), 𝜎𝑓𝑔(𝑥), and 𝜎𝑠
𝑔′→𝑔(𝑥) are, respectively, the total cross section, the fission cross 

section, and the scattering cross section, 𝑘𝑒𝑓𝑓 is the effective multiplication factor, 𝜒𝑔 is the 

fission spectrum, and 𝜈 is the average number of fast neutrons produced per fission. 

The boundary conditions used are of the vacuum type and, for 𝑔 = 1: 𝐺, take the form 

 
{
ψg,m(0) = 0, m = 1:N 2⁄ ,

ψg,m(H) = 0, m = (N 2⁄ + 1):N.
 

 

(2) 

2.2. Discretization of the spatial domain 

The discretization of the spatial domain consists of dividing the domain D (Fig. 11111) 

into a number J of spatial regions (or nodes) Γ𝑗, 𝑗 = 1: 𝐽, with dimensions ℎ𝑗 = 𝑥𝑗+1 2⁄ −

𝑥𝑗−1 2⁄ , where the nuclear parameters are uniform. 

Figure 1: Spatial grid in a one-dimensional domain D of length H cm. 

 

Thus, in each homogeneous region Γ𝑗, Eq. (1) is given by 
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𝜇𝑚

𝑑

𝑑𝑥
𝜓𝑔,𝑚(𝑥) + 𝜎𝑡𝑔

𝑗
𝜓𝑔,𝑚(𝑥)

=
𝜒𝑔
2𝑘𝑒𝑓𝑓

∑ 𝜈𝜎
𝑓𝑔′
𝑗

𝐺

𝑔′=1

∑𝜔𝑛𝜓𝑔′,𝑛(𝑥)

𝑁

𝑛=1

+
1

2
∑ 𝜎𝑠𝑗

𝑔′→𝑔
∑𝜔𝑛𝜓𝑔′,𝑛(𝑥),

𝑁

𝑛=1

𝐺

𝑔′=1

 

 

(3) 

with 𝑚 = 1:𝑁, 𝑔 = 1: 𝐺, 𝑗 = 1: 𝐽 and 𝑥𝑗−1 2⁄ ≤ 𝑥 ≤ 𝑥𝑗+1 2⁄ . 

Equation (3) is a first-order ordinary differential equation with constant coefficients. 

In this paper, we use an iterative process to obtain a numerical solution of Eq. (3) with 

boundary conditions given by Eq. (2). To this end, we develop a nodal methodology in which 

we approximate the fission term in quadratic polynomial expansion. 

2.3. Approximation of the fission term in quadratic polynomial expansion 

The fission term is approximated by second-degree polynomial expansion  

 
𝜒𝑔
2𝑘𝑒𝑓𝑓

∑ 𝜈𝜎
𝑓𝑔′
𝑗

𝐺

𝑔′=1

∑𝜔𝑛𝜓𝑔′,𝑛(𝑥) ≅ 𝑎𝑔,0
𝑗
+ 𝑎𝑔,1

𝑗
𝑓1
𝑗(𝑥) + 𝑎𝑔,2

𝑗
𝑓2
𝑗(𝑥),

𝑁

𝑛=1

 
 

(4) 

where 𝑓1
𝑗(𝑥) =

2

ℎ𝑗
(𝑥 − 𝑥𝑗) and 𝑓2

𝑗(𝑥) =
1

2
{3 [

2

ℎ𝑗
(𝑥 − 𝑥𝑗)]

2

− 1} are orthogonal 

polynomials, with 𝑥𝑗 =
𝑥𝑗−1 2⁄ +𝑥𝑗+1 2⁄

2
. The coefficients 𝑎𝑔,0

𝑗
, 𝑎𝑔,1

𝑗
, and 𝑎𝑔,2

𝑗
 are written as 

follows 

 

𝑎𝑔,0
𝑗
=

𝜒𝑔
2𝑘𝑒𝑓𝑓

∑ 𝜈𝜎
𝑓𝑔′
𝑗

𝐺

𝑔′=1

∑𝜔𝑛𝜓̅𝑔′,𝑛
𝑗
,

𝑁

𝑛=1

 
 

(5) 
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𝑎𝑔,1
𝑗
=

𝜒𝑔
4𝑘𝑒𝑓𝑓

∑ 𝜈𝜎
𝑓𝑔′
𝑗

𝐺

𝑔′=1

∑𝜔𝑛[𝜓𝑔′,𝑛(𝑥𝑗+1 2⁄ ) − 𝜓𝑔′,𝑛(𝑥𝑗−1 2⁄ )],

𝑁

𝑛=1

 
 

(6) 

 

𝑎𝑔,2
𝑗
=

𝜒𝑔
4𝑘𝑒𝑓𝑓

∑ 𝜈𝜎
𝑓𝑔′
𝑗

𝐺

𝑔′=1

∑𝜔𝑛 [𝜓𝑔′,𝑛(𝑥𝑗+1 2⁄ ) + 𝜓𝑔′,𝑛(𝑥𝑗−1 2⁄ ) − 2𝜓̅𝑔′,𝑛
𝑗
] .

𝑁

𝑛=1

 
 

(7) 

Observation. To determine Eq. (5), the averaging operator 
𝟏

𝒉𝒋
∫ (⋅)𝒅𝒙
𝒙𝒋+𝟏 𝟐⁄
𝒙𝒋−𝟏 𝟐⁄

 is applied in 

Eq. (4) and to obtain Eqs. (6) and (7), it is sufficient to consider, in Eq. (4), 𝒙 = 𝒙𝒋−𝟏 𝟐⁄  and 

𝒙 = 𝒙𝒋+𝟏 𝟐⁄ . 

2.4. General solution of the system of equations 

Equation (3), with the approximation of the fission term imposed in Eq. (4), takes the 

form 

 𝜇𝑚
𝑑

𝑑𝑥
𝜓𝑔,𝑚(𝑥) + 𝜎𝑡𝑔

𝑗
𝜓𝑔,𝑚(𝑥) −

1

2
∑ 𝜎𝑠𝑗

𝑔′→𝑔 ∑ 𝜔𝑛𝜓𝑔′,𝑛(𝑥)
𝑁
𝑛=1

𝐺
𝑔′=1 =

𝑎𝑔,0
𝑗
+ 𝑎𝑔,1

𝑗
𝑓1
𝑗(𝑥) + 𝑎𝑔,2

𝑗
𝑓2
𝑗(𝑥). 

 

(8) 

The general solution of Eq. (8) can be written as follows 

 
𝜓𝑔,𝑚(𝑥) = 𝜓𝑔,𝑚

ℎ𝑜𝑚(𝑥) + 𝜓𝑔,𝑚
𝑝𝑎𝑟𝑡(𝑥), 

 

(9) 

where 𝜓𝑔,𝑚
ℎ𝑜𝑚(𝑥) is the homogeneous solution and 𝜓𝑔,𝑚

𝑝𝑎𝑟𝑡(𝑥) is a particular solution given by 

 

𝜓𝑔,𝑚
ℎ𝑜𝑚(𝑥) =∑𝛼𝑙

𝑗

𝑁⋅𝐺

𝑙=1

𝑎𝑔,𝑚
𝑗
(𝜈𝑙

𝑗
)𝑒𝑥𝑝{−𝜈𝑙

𝑗
(𝑥 − 𝑥𝑗)}, 

 

(10) 
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𝜓𝑔,𝑚
𝑝𝑎𝑟𝑡(𝑥) = 𝑏𝑔,0𝑚

𝑗
+ 𝑏𝑔,1𝑚

𝑗
𝑓1
𝑗(𝑥) + 𝑏𝑔,2𝑚

𝑗
𝑓2
𝑗(𝑥), 

 

(11) 

with 𝑚 = 1:𝑁, 𝑔 = 1: 𝐺, 𝑗 = 1: 𝐽 and 𝑥 ∈ Γ𝑗 . 

To determine the coefficients 𝑏𝑔,0𝑚
𝑗

, 𝑏𝑔,1𝑚
𝑗

and 𝑏𝑔,2𝑚
𝑗

, it is sufficient to substitute the 

particular solution given in Eq. (11) in Eq. (8). In this way, by the equality of polynomials, 

we obtain, for 𝑚 = 1:𝑁, 𝑔 = 1: 𝐺 and 𝑗 = 1: 𝐽, 

 

{
 
 
 
 

 
 
 
 𝜎𝑡𝑔

𝑗
𝑏𝑔,2𝑚
𝑗

−
1

2
∑ 𝜎𝑠𝑗

𝑔′→𝑔
∑𝜔𝑛𝑏𝑔′,2𝑛

𝑗
= 𝑎𝑔,2

𝑗
,

𝑁

𝑛=1

𝐺

𝑔′=1

𝜎𝑡𝑔
𝑗
𝑏𝑔,1𝑚
𝑗

−
1

2
∑ 𝜎𝑠𝑗

𝑔′→𝑔
∑𝜔𝑛𝑏𝑔′,1𝑛

𝑗
= 𝑎𝑔,1

𝑗
− (6𝜇𝑚 ℎ𝑗⁄ )𝑏𝑔,2𝑚

𝑗
,

𝑁

𝑛=1

𝐺

𝑔′=1

𝜎𝑡𝑔
𝑗
𝑏𝑔,0𝑚
𝑗

−
1

2
∑ 𝜎𝑠𝑗

𝑔′→𝑔
∑𝜔𝑛𝑏𝑔′,0𝑛

𝑗
= 𝑎𝑔,0

𝑗
− (2𝜇𝑚 ℎ𝑗⁄ )𝑏𝑔,1𝑚

𝑗
.

𝑁

𝑛=1

𝐺

𝑔′=1

 
 

(12) 

Let 𝒃𝑔,0
𝑗
= (𝑏𝑔,0𝑚

𝑗
), 𝒃𝑔,1

𝑗
= (𝑏𝑔,1𝑚

𝑗
) and 𝒃𝑔,2

𝑗
= (𝑏𝑔,2𝑚

𝑗
) be the order vectors 𝑀 =

𝑁 ⋅ 𝐺 formed, in this order, by the coefficients 𝑏𝑔,0𝑚
𝑗

, 𝑏𝑔,1𝑚
𝑗

 and 𝑏𝑔,2𝑚
𝑗

, 𝑚 = 1:𝑁, 𝑔 = 1: 𝐺 

and 𝐶 = (𝑐𝑚𝑛) the order matrix M given by 

 

𝑐𝑚𝑛 =

{
 
 

 
 𝜎𝑡𝑔

𝑗
−
1

2
∑ 𝜎𝑠𝑗

𝑔′→𝑔
∑𝜔𝑛

𝑁

𝑛=1

𝐺

𝑔′=1

, 𝑚 = 𝑛,

−
1

2
∑ 𝜎𝑠𝑗

𝑔′→𝑔
∑𝜔𝑛

𝑁

𝑛=1

𝐺

𝑔′=1

, 𝑚 ≠ 𝑛.

 
 

(13) 

From Eqs. (12) and (13), one can write 
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𝒃𝑔,2
𝑗
= 𝐶−1 ∗ 𝒂̃𝑔,2

𝑗
, 

 

(14) 

 
𝒃𝑔,1
𝑗
= 𝐶−1 ∗ 𝒂̃𝑔,1

𝑗
, 

 

(15) 

 
𝒃𝑔,0
𝑗
= 𝐶−1 ∗ 𝒂̃𝑔,0

𝑗
, 

 

(16) 

where 𝒂̃𝑔,2
𝑗

=(𝑎𝑔,2
𝑗

), 𝒂̃𝑔,1
𝑗
= (𝑎𝑔,1

𝑗
− (6𝜇𝑚 ℎ𝑗⁄ )𝑏𝑔,2𝑚

𝑗
) and 𝒂̃𝑔,0

𝑗
= (𝑎𝑔,0

𝑗
− (2𝜇𝑚 ℎ𝑗⁄ )𝑏𝑔,1𝑚

𝑗
 

has order M, for 𝑚 = 1:𝑁, 𝑔 = 1: 𝐺 and 𝑗 = 1: 𝐽. 

Substituting the homogeneous solution form 𝑎𝑔,𝑚
𝑗
(𝜈𝑙

𝑗
)𝑒𝑥𝑝{−𝜈𝑙

𝑗
(𝑥 − 𝑥𝑗)} into Eq. 

(8), we obtain the eigenvalue problem 

 
1

𝜇𝑚
∑ ∑(𝜎

𝑡𝑔′
𝑗
𝛿𝑔𝑔′𝛿𝑚𝑛 − 𝜎𝑠𝑗

𝑔′→𝑔 𝜔𝑛
2
) 𝑎

𝑔′,𝑛

𝑗
(𝜈𝑙

𝑗
) = 𝜈𝑙

𝑗
⋅ 𝑎𝑔,𝑚

𝑗
(𝜈𝑙

𝑗
),

𝑁

𝑛=1

𝐺

𝑔′=1

 
 

(17) 

here 𝛿𝑚𝑛 is the Kronecker delta given by 𝛿𝑚𝑛 = {
1, 𝑚 = 𝑛,
0, 𝑚 ≠ 𝑛.

 The variables 𝜈𝑙
𝑗
 are the 

eigenvalues and 𝑎𝑔,𝑚
𝑗
(𝜈𝑙

𝑗
) are the components of the eigenvectors, with 𝑚 = 1:𝑁, 𝑔 =

1: 𝐺, 𝑗 = 1: 𝐽 and 𝑙 = 1:𝑀. 

It is assumed that the angular fluxes of neutrons incident on the boundaries of the 

node Γ𝑗 are known. Then, in Eq. (9), we consider 𝑥 = 𝑥𝑗−1 2⁄  when 𝑔 = 1:𝐺 and 𝑚 =

1:𝑁 2⁄  and 𝑥 = 𝑥𝑗+1 2⁄  when 𝑔 = 1: 𝐺 and 𝑚 = (𝑁 2⁄ +  1): 𝑁. Hence, we obtain the 

system of linear and algebraic equations of order 𝑀 = 𝑁 ⋅ 𝐺 given by 

 

∑[𝑎𝑔,𝑚
𝑗
(𝜈𝑙

𝑗
)𝑒𝑥𝑝{𝜈𝑙

𝑗
(𝜈𝑙

𝑗
ℎ𝑗 2⁄ )}]𝛼𝑙

𝑗
=

𝑀

𝑙=1

𝜓𝑔,𝑚(𝑥𝑗−1 2⁄ ) − 𝜓𝑔,𝑚
𝑝𝑎𝑟𝑡

(𝑥𝑗−1 2⁄ ), 
 

(18) 
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for 𝑚 = 1:𝑁 2⁄ , 𝑔 = 1: 𝐺 and 𝜓𝑔,𝑚
𝑝𝑎𝑟𝑡

(𝑥𝑗−1 2⁄ ) = 𝑏𝑔,0𝑚
𝑗

− 𝑏𝑔,1𝑚
𝑗

+ 𝑏𝑔,2𝑚
𝑗

, 

 

∑[𝑎𝑔,𝑚
𝑗
(𝜈𝑙

𝑗
)𝑒𝑥𝑝{−𝜈𝑙

𝑗
(𝜈𝑙

𝑗
ℎ𝑗 2⁄ )}]𝛼𝑙

𝑗
=

𝑀

𝑙=1

𝜓𝑔,𝑚(𝑥𝑗+1 2⁄ ) − 𝜓𝑔,𝑚
𝑝𝑎𝑟𝑡

(𝑥𝑗+1 2⁄ ), 
 

(19) 

for 𝑚 = (𝑁 2⁄ + 1):𝑁, 𝑔 = 1:𝐺 and 𝜓𝑔,𝑚
𝑝𝑎𝑟𝑡

(𝑥𝑗+1 2⁄ ) = 𝑏𝑔,0𝑚
𝑗

+ 𝑏𝑔,1𝑚
𝑗

+ 𝑏𝑔,2𝑚
𝑗

. 

2.5. Sweep equations 

Figure 2 shows the angular fluxes at a node Γ𝑗 in a group 𝑔 of energy for 𝑆4. The 

emergent angular fluxes are represented by 𝜓𝑔,3
𝑗−1 2⁄ ,𝑒𝑚

, 𝜓𝑔,4
𝑗−1 2⁄ ,𝑒𝑚

, 𝜓𝑔,1
𝑗+1 2⁄ ,𝑒𝑚

 and 

𝜓𝑔,2
𝑗+1 2⁄ ,𝑒𝑚

, the incident angular fluxes are represented by 𝜓𝑔,1
𝑗−1 2⁄ ,𝑖𝑛

, 𝜓𝑔,2
𝑗−1 2⁄ ,𝑖𝑛

, 𝜓𝑔,3
𝑗+1 2⁄ ,𝑖𝑛

 

and 𝜓𝑔,4
𝑗+1 2⁄ ,𝑖𝑛

 and in the internal part of the node are represented the average angular fluxes 

𝜓̅𝑔,1
𝑗

, 𝜓̅𝑔,2
𝑗

, 𝜓̅𝑔,3
𝑗

 and 𝜓̅𝑔,4
𝑗

. 

The sweep equations are used to obtain the angular fluxes emerging at the node faces, 

and for 𝑔 = 1: 𝐺 and 𝑗 = 1: 𝐽 they are given by 

 

𝜓𝑔,𝑚(𝑥𝑗−1 2⁄ ) =∑𝛼𝑙
𝑗
𝑎𝑔,𝑚
𝑗
(𝜈𝑙

𝑗
)𝑒𝑥𝑝{𝜈𝑙

𝑗
ℎ𝑗 2⁄ } +

𝑀

𝑙=1

𝜓𝑔,𝑚
𝑝𝑎𝑟𝑡

(𝑥𝑗−1 2⁄ ), 
 

(20) 

when 𝑚 = (𝑁 2⁄  +  1):𝑁, and 

Figure 2: Angular fluxes at node 𝚪𝒋 for S4. 
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𝜓𝑔,𝑚(𝑥𝑗+1 2⁄ ) =∑𝛼𝑙
𝑗
𝑎𝑔,𝑚
𝑗
(𝜈𝑙

𝑗
)𝑒𝑥𝑝{− 𝜈𝑙

𝑗
ℎ𝑗 2⁄ } +

𝑀

𝑙=1

𝜓𝑔,𝑚
𝑝𝑎𝑟𝑡

(𝑥𝑗+1 2⁄ ), 
 

(21) 

when 𝑚 = 1:𝑁 2⁄ . 

2.6. Numerical solution (iterative process) 

The iterative process is divided into two parts: an internal process, which aims to 

obtain successive estimates of the angular fluxes of neutrons emerging from homogeneous 

regions in the entire spatial domain, and an outer process, which obtains successive estimates 

of the fission source and 𝑘𝑒𝑓𝑓, using the power method. 

Internal iterative process. The spatial domain D is traversed initially from left to right 

(Fig. 1), starting at 𝚪𝟏 (x = 0 cm) and ending at 𝚪𝑱 (x = H cm) and then from right to left, 

starting at 𝚪𝑱 and ending at 𝚪𝟏, calculating the fluxes emerging from each homogeneous 

region in the scanning direction. 

In the left-to-right direction, the coefficients 𝛼𝑙
𝑗
 are obtained through Eqs. (18) and 

(19), considering the most recent estimates of the angular fluxes of neutrons incident on the 

left face of the node. Once this is done, the emergent fluxes of each node, 𝜓𝑔,𝑚
𝑗+1 2⁄ ,𝑒𝑚

, are 

calculated using Eq. (21). When the process starts from right to left, the coefficients 𝛼𝑙
𝑗
 are 

updated again and the emergent angular fluxes at the left interface of each node, 𝜓𝑔,𝑚
𝑗−1 2⁄ ,𝑒𝑚

, 

are calculated using Eq.(20). 

For the inner iterations, the convergence criterion in the scalar neutron flux is used 

 

𝑚𝑎𝑥 |
𝜙𝑔𝑗
(𝑖+1)

− 𝜙𝑔𝑗
(𝑖)

𝜙𝑔𝑗
(𝑖+1)

| ≤ 𝜀1, 𝑗 = 1: 𝐽 + 1 𝑎𝑛𝑑 𝑔 = 1: 𝐺, 
 

(22) 
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where 𝜙𝑔𝑗
(𝑖)

 represents the i-th estimate of the scalar neutron flux at the faces of node Γ𝑗 and 

𝜀1 is the precision imposed for the inner process. 

Outer iterative process. The outer iterative process occurs as soon as the convergence 

criterion of the internal iterative process is met and aims to calculate the effective 

multiplication factor (𝒌𝒆𝒇𝒇) using the expression 

 

𝑘𝑒𝑓𝑓
(𝑝)

= 𝑘𝑒𝑓𝑓
(𝑝−1)

∑ {∑ ℎ𝑗𝜈𝜎𝑓𝑔′
𝑗𝐽

𝑗=1 [
1
2
∑ 𝜔𝑛𝜓̅𝑔′,𝑛

𝑗,(𝑝)𝑁
𝑛=1 ]}𝐺

𝑔′=1

∑ {∑ ℎ𝑗𝜈𝜎𝑓𝑔′
𝑗𝐽

𝑗=1 [
1
2
∑ 𝜔𝑛𝜓̅𝑔′,𝑛

𝑗,(𝑝−1)𝑁
𝑛=1 ]}𝐺

𝑔′=1

, 
 

(23) 

where the mean angular flux is given by 

𝝍̅𝒈,𝒎
𝒋

=∑𝜶𝒍
𝒋
𝒂𝒈,𝒎
𝒋
(𝝂𝒍

𝒋
)
𝟐

𝒉𝒋𝝂𝒍
𝒋
𝐬𝐢𝐧𝐡(𝝂𝒍

𝒋
𝒉𝒋 𝟐⁄ ) + 𝒃𝒈,𝟎𝒎

𝒋
.

𝑴

𝒍=𝟏

 

For the outer iterations, two conditions are required: a convergence criterion in the 

mean scalar neutron flux at the nodes, represented by 

 

𝑚𝑎𝑥 |
𝜙̅𝑔𝑗
(𝑝)
− 𝜙̅𝑔𝑗

(𝑝−1)

𝜙̅𝑔𝑗
(𝑝)

| ≤ 𝜀2, 𝑗 = 1: 𝐽 𝑎𝑛𝑑 𝑔 = 1: 𝐺, 
 

(24) 

and a criterion for 𝒌𝒆𝒇𝒇 described by 

 
|
𝑘𝑒𝑓𝑓

(𝑝) − 𝑘𝑒𝑓𝑓
(𝑝−1)

𝑘𝑒𝑓𝑓
(𝑝)

| ≤ 𝜀3, 
 

(25) 

where 𝜺𝟐 and 𝜺𝟑 are the precisions imposed on the outer process.  
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3. NUMERICAL RESULTS  

Numerical results are presented on a model-problem which was used to verify the 

accuracy of the nodal methodology proposed in this paper. These numerical results were 

compared with those of the DD fine mesh method. The Percentage Relative Deviation is 

given by PRD(%) = [(r* - r)/r]*100, where r* are the results of the methodology proposed in 

this paper and r are the results of the DD reference. The numerical algorithms of the 

proposed methodology and of the DD method were implemented in the MATLAB. The 

computer used to generate the results was a Samsung with an Intel Core i5-1135G7 

processor, 2.4GHz with 8GB of RAM and a 64-bit Windows 11 operating system. 

3.1. Model-Problem 

The model-problem is a geometric configuration of the central line (on the horizontal) 

on Figure 3, that represents an ADS [7,8] type reactor with a one-dimensional domain on  

389.76 cm having 13 regions with 7 material zones. The order of the Gauss-Legendre 

quadrature is N = 4 and neutrons with 4 energy groups were used. The left and right 

boundary conditions are vacuum. 

Figure 3: 1D Configuration of sub-critical system (a = 18.56 cm). 

Source: Reference [7]. 

The fission spectrum used is given in Table 1. 
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Table 1: Fission spectrum. 

𝝌𝒈 

𝑔 = 1 𝑔 = 2 𝑔 = 3 𝑔 = 4 

0.86614323783790 0.11053026089759 0.22801119041383e-1a 0.52538222314407e-3 

aRead as 0.22801119041383 x 10-1. 

The total macroscopic cross sections, the fission macroscopic cross sections and the 

differential scattering cross sections are given, respectively, in Tables 2, 3 and 4. 

Table 2: Total macroscopic cross sections (cm-1). 

ZONE 
𝝈𝒕
𝒈

 

𝒈 = 𝟏 𝒈 = 𝟐 𝒈 = 𝟑 𝒈 = 𝟒 

1 0.16646755622620 0.20708678925174 0.30141549207271 0.31932734589886 

2 0.21453781478684 0.25592366410894 0.36732369116619 0.73085372516866 

3 0.21727458632097 0.25535512674919 0.36455050492276 0.73119034416605 

4 0.25058447457641 0.30112795045951 0.44160469618765 0.80050229238996 

5 0.25841177609114 0.40242028424501 0.50955628791776 0.67905932681244 

6 0.20837148400182 0.27296874233007 0.37203732809505 0.44393045088137 

7 0.20808473120670 0.27235341988672 0.37190271311542 0.44246262690578 

 

Table 3: Macroscopic fission cross sections (cm-1). 

ZONE 
𝝂𝝈𝒇

𝒈
 

𝒈 = 𝟏 𝒈 = 𝟐 𝒈 = 𝟑 𝒈 = 𝟒 

1 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 

2 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 

3 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 

4 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 

5 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 

6 0.10863339654228e-1a 0.32471096785577e-2 0.30006825711972e-2 0.49687562915774e-2 

7 0.11221000361185e-1 0.42669203492471e-2 0.41451001694494e-2 0.69994284675514e-2 

aRead as 0.10863339654228 x 10-1. 
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Table 4: Isotropic differential scattering cross section (cm-1). 

ZONE 
𝝈𝒔
𝒈′→𝒈

 

𝒈′ → 𝒈 𝒈′ = 𝟏 𝒈′ = 𝟐 𝒈′ = 𝟑 𝒈′ = 𝟒 

1 

𝑔 = 1 0.16222913513400e+0a 0.00000000000000e+0 0.00000000000000e+0 0.00000000000000e+0 

𝑔 = 2 0.36697017471314e-2 0.20593424121073e+0 0.00000000000000e+0 0.00000000000000e+0 

𝑔 = 3 0.48715452703277e-3 0.10488387103767e-2 0.30110171532229e+0 0.00000000000000e+0 

𝑔 = 4 0.78964654747121e-5 0.00000000000000e+0 0.20161301186285e-3 0.31902446488107e+0 

2 

𝑔 = 1 0.20153835505666e+0 0.00000000000000e+0 0.00000000000000e+0 0.00000000000000e+0 

𝑔 = 2 0.10707621263452e-1 0.25128695243305e+0 0.00000000000000e+0 0.00000000000000e+0 

𝑔 = 3 0.17039929923862e-2 0.42768389582139e-2 0.36513472392174e+0 0.00000000000000e+0 

𝑔 = 4 0.10340815843129e-3 0.95415164020803e-6 0.15806435775153e-2 0.72871342075639e+0 

3 

𝑔 = 1 0.20467386504769e+0 0.00000000000000e+0 0.00000000000000e+0 0.00000000000000e+0 

𝑔 = 2 0.10227580563091e-1 0.25095710445471e+0 0.00000000000000e+0 0.00000000000000e+0 

𝑔 = 3 0.17256163669521e-2 0.40410598407383e-2 0.36241749462944e+0 0.00000000000000e+0 

𝑔 = 4 0.10549007331644e-3 0.76680706694453e-6 0.15365658856520e-2 0.72897305642182e+0 

4 

𝑔 = 1 0.23668102448269e+0 0.00000000000000e+0 0.00000000000000e+0 0.00000000000000e+0 

𝑔 = 2 0.11409522450233e-1 0.29606851516865e+0 0.00000000000000e+0 0.00000000000000e+0 

𝑔 = 3 0.18919368439678e-2 0.46707832812833e-2 0.43899130539522e+0 0.00000000000000e+0 

𝑔 = 4 0.11520982936293e-3 0.17936202249794e-5 0.19655013153264e-2 0.79794514657930e+0 

5 

𝑔 = 1 0.22549134074260e+0 0.00000000000000e+0 0.00000000000000e+0 0.00000000000000e+0 

𝑔 = 2 0.27709282726362e-1 0.35435686876018e+0 0.00000000000000e+0 0.00000000000000e+0 

𝑔 = 3 0.61981887073257e-3 0.34806523475536e-1 0.47151479865429e+0 0.00000000000000e+0 

𝑔 = 4 0.35742069153492e-4 0.00000000000000e+0 0.80200321963827e-2 0.58953264092285e+0 

6 

𝑔 = 1 0.19221930911845e+0 0.00000000000000e+0 0.00000000000000e+0 0.00000000000000e+0 

𝑔 = 2 0.10537653634523e-1 0.26190751249875e+0 0.00000000000000e+0 0.00000000000000e+0 

𝑔 = 3 0.11077656386834e-2 0.73387880672224e-2 0.36285507185274e+0 0.00000000000000e+0 

𝑔 = 4 0.32924647172602e-4 0.71793891929223e-5 0.21448608660985e-2 0.42556160238916e+0 

7 

𝑔 = 1 0.19202385524166e+0 0.00000000000000e+0 0.00000000000000e+0 0.00000000000000e+0 

𝑔 = 2 0.10436734926051e-1 0.26139167019435e+0 0.00000000000000e+0 0.00000000000000e+0 

𝑔 = 3 0.10905947200017e-2 0.72032757041649e-2 0.36296181839921e+0 0.00000000000000e+0 

𝑔 = 4 0.31879405980967e-4 0.58552011947768e-5 0.22345523271838e-2 0.42498221836133e+0 

aRead as 0.16222913513400 x 100. 
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The tolerances for the convergence criteria are: 𝜺𝟏 = 𝟏𝟎
−𝟓 (for the inner iterations), 

𝜺𝟐 = 𝟏𝟎
−𝟕 (for the mean scalar fluxes of the outer iterations) and 𝜺𝟑 = 𝟏𝟎

−𝟗 (for the 𝒌𝒆𝒇𝒇 

of the outer iterations).  

In Table 5 we list the values of 𝒌𝒆𝒇𝒇 obtained in the proposed methodology for 

different spatial grids. To generate the results of the DD method we use a mesh of 4096 

nodes per region. 

Table 5: Effective multiplication factor (𝑘𝑒𝑓𝑓). 

𝚲𝒏
𝒂  𝒌𝒆𝒇𝒇 Cpu Time (𝒔) PRD(%)b 

Λ0 0.66094067 1 -3.67e-2c 

Λ1 0.66119507 3 1.77e-3 

Λ2 0.66118681 9 5.25e-4 

Λ4 0.66118277 60 -8.51e-5 

Λ8 0.66118276 1464 -8.73e-5 

DD Method 0.66118334 178  

aΛ𝑛 = 2n  spatial nodes per region. 
bPercentage relative deviation in relation to the  DD method. 

cRead as -3.67 x 10-2. 

 

It is noted that the largest percentagem relative deviation obtained for 𝒌𝒆𝒇𝒇 (Table 5) 

by the method developed in this paper was approximately 0.04% in relation to the reference 

value generated by the DD method in fine-mesh calculation.  

Table 6 presents the values of the scalar neutron fluxes at the interfaces of the material 

regions of the model-problem. The proposed methodology was implemented with 1 node 

per region and 16 (𝚲𝟒) nodes per region. We calculated the percentage relative deviation of 

the scalar neutron fluxes of the proposed methodology in relation to the DD method. 
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Table 6: Scalar neutron flux (cm-2 s-1). 

𝒙 (𝒄𝒎) Group DD 𝚲𝟎
𝒂 𝚲𝟒 

37.12 

1 2.89586489e-2b 2.91227620e-2 

(5.66e-1)c 

2.89622630e-2 
(1.24e-2) 

2 1.06932802e-2 1.07546160e-2 

(5.73e-1) 

1.06955258e-2 

(2.10e-2) 

3 2.20229186e-3 2.21646165e-3 

(6.43e-1) 

2.20330586e-3 

(4.60e-2) 

4 7.77277795e-6 7.84287692e-6 

(9.01e-1) 

7.78402037e-6 

(1.44e-1) 

315.52 

1 7.31249335e-1 7.35422187e-1 

(5.70e-1) 

7.31285286e-1 

(4.91e-3) 

2 1.57941245e-1 1.58812888e-1 
(5.51e-1) 

1.57952621e-1 
(7.20e-3) 

3 3.62760023e-2 3.64976584e-2 

(6.11e-1) 

3.62803266e-2 

(1.19e-2) 

4 4.56531615e-4 4.60091218e-4 
(7.79e-1) 

4.56601306e-4 
(1.52e-2) 

aΛ𝑛 = 2n spatial nodes per region. 
bRead as 2.89586489 x 10-2. 

cPercentage relative deviation in relation to DD method. 

4. CONCLUDING REMARKS 

This paper describes the implementation of a semi-analytical nodal (coarse mesh) 

deterministic methodology for obtaining numerical solutions to the eigenvalue problems 

based on neutron transport theory, in slab geometry, with isotropic scattering, using the 

discrete ordinates formulation SN and the multigroup energy formulation. The proposed 

methodology uses a quadratic polynomial approximation in the fission term of the transport 

equation and keeps the scattering term without approximation. 

The construction of the neutron transport equation and the internal and outer iterative 

processes used to obtain the numerical solution of the eigenvalue problems were shown. It 
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is observed that, due to the approximation made in the fission term, 𝑘𝑒𝑓𝑓 does not appear 

in Eq. (21), thus, once the eigenvalues and eigenvectors have been calculated, it is not 

necessary to calculate them again when 𝑘𝑒𝑓𝑓 is updated in the outer iterative process. 

This methodology, despite not being free from spatial truncation error in one-

dimensional calculations, did not compromise the accuracy of the results nor greatly increase 

the execution times of the computational simulations in the model problem used. 

Computational algorithms were implemented in MATLAB. 

In the model-problem presented previously, the proposed methodology provided real 

eigenvalues, and they appeared pairwise symmetric. We obtained good results according to 

the Diamond Difference [5] reference, which was implemented with 4096 nodes per region 

in the model-problem. The refinement did not significantly increase the computational cost 

in terms of response time and brought our results closer to those of analytical solutions, 

ensuring accuracy, efficiency, and reliability. Furthermore, we obtained good results with only 

one node per region. 

For future work, we propose the extension of this methodology to two-dimensional 

problems using the multigroup energy formulation.  At the moment, we are conducting a 

study to evaluate the possibility of applying this methodology to criticality (eigenvalue) 

calculations, considering other types of multidimensional geometry, e.g., rectangular 

Cartesian, cylindrical etc. 

ACKNOWLEDGMENTS 

The authors thank the Multi-scale Particle Transport Laboratory (LABTRAN) at 

IPRJ/UERJ for technical support.  



 
 

Pinheiro-Natália et al. 

 

 
 
Braz. J. Radiat. Sci., Rio de Janeiro, 2025, 13(4): 01-20. e2940.  

  p. 19 

 

FUNDING  

This research was carried out with the support of the Coordination for the 

Improvement of Higher Education Personnel - Brazil (CAPES) - Financing Code 001. 

Natália Pinheiro is supported by financial support from UESC (Santa Cruz State University) 

to research. 

CONFLICT OF INTEREST  

All authors declare that they have no conflicts of interest. 

 

REFERENCES 

[1] Lewis, E. E.; Miller, W. F. Computational methods of neutron transport. 2nd Edition, 
Wiley, New York, USA, 1993. ISBN 0-471-09245-2. 

[2] Badruzzaman, A. Nodal methods in transport theory. Advances in Nuclear 
Science and Technology, 12 1990. in <https://www.osti.gov/biblio/443936>. 

[3] Lawrence, R. D. Progress in nodal methods for the solution of the neutron diffusion and 
transport equations. Progress in Nuclear Energy, v. 17, p. 271-301, 1986. 

[4] Barros, R. C.; Larsen, E. W. A numerical method for discrete ordinate problems of one-
group slab geometry without spatial truncation error. Nuclear Science and 
Engineering, v. 104, p. 199-208, 1990. 

[5] de Abreu, M. P. Métodos determinísticos livres de aproximações espaciais para a 
solução numérica dominante de problemas de autovalor multiplicativo na formulação 
de ordenadas discretas da teoria do transporte de nêutrons. Tese de Doutorado, 
COPPE/UFRJ, Rio de Janeiro, RJ, Brasil, 1996. 

https://www.osti.gov/biblio/443936


 
 

Pinheiro-Natália et al. 

 

 
 
Braz. J. Radiat. Sci., Rio de Janeiro, 2025, 13(4): 01-20. e2940.  

  p. 20 

 

[6] Ramírez, S. Cálculos de criticalidade usando a equação de transporte de nêutrons 
multigrupo unidimensional na formulação das ordenadas discretas a partir da solução 
analítica local. Tese de Doutorado, IPRJ/UERJ, Nova Friburgo, RJ, Brasil, 2021. 

[7] Salas, L. L.; Silva, F. C.; Martinez, A. S. A new point kinetics model for ADS-type reactor 
using the importance function associated to the fission rate as weight function. Annals 
of Nuclear Energy, v 190, p. 1-20, 2023. 

[8] Tsujimoto, K.; Sasa, T.; Nishihara, K.; Oigawa, H.; Takano, H. Neutronics design for 
lead-bismuth cooled accelerator-driven system for transmutation of minor actinides. 
Journal Nuclear Science and Technology, v. 41, n. 1, p. 21-36, 2004. 

 

LICENSE 

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third-party material in this article are included in the article’s 
Creative Commons license, unless indicated otherwise in a credit line to the material.  
To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/. 


