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ABSTRACT 

 
In this paper, we propose a new deterministic numerical methodology to solve the one-dimensional linearized 

Boltzmann equation applied to neutron shielding problems (fixed-source), using the transport equation in the 

discrete ordinates formulation (SN) considering the multigroup theory. This is a hybrid methodology, entitled 

Modified Spectral Deterministic Method (SDM-M), that derives from the Spectral Deterministic Method (SDM) 

and Diamond Difference (DD) methods. This modification in the SDM method aims to calculate neutron scalar 

fluxes with lower computational cost. Two model-problems are solved using the SDM-M, and the results are 

compared to the coarse-mesh methods SDM, Spectral Green's Function (SGF) and Response Matrix (RM), and 

the fine-mesh method DD. The numerical results were obtained in the programming language JAVA version 

1.8.0_91. 

 

Keywords: neutron transport theory, mathematical modelling, discrete ordinates, neutron shielding, fixed-

source calculations, deterministic computational neutronic. 
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1. INTRODUCTION 

 

Neutron transport modelling have been a crescent research area, due to the many fields that need 

an accurate knowledge of the neutron flux behavior and it's interactions with the nuclei that 

constitutes the material zones, e.g., neutron shielding (fixed-source problems), radiology protection, 

nuclear medicine and oil prospecting. The calculation of the neutron angular flux inside a material 

zone can be computationally expensive when it comes to solve real world problems. Thus, the 

development of new methodologies to solve these problems accurately and in a faster way have 

been the main goal of our computational deterministic neutronic group. 

A neutron moving inside a material zone can be described deterministically by the linearized 

Boltzmann equation, derived for the gas kinetics theory [1,2]. Which is a linear partial integro-

differential equation with 3 spatial variables, 2 angular variables, 1 time variable and 1 energetic 

variable. This equation represents a balance of production and loss of neutrons, assuming that the 

interaction of these particles with hosting media does not affect its structure, and there is no 

interaction between them. In this work, only stationary one-dimensional models are studied. The 

angular variable is treated according to the discrete ordinates formulation (𝑆𝑁), with multigroup 

method [1]. 

The spatial variable can be treated with coarse or fine-mesh methods. The solution of neutron 

transport problem using a fine-mesh approach, as for example Diamond Difference (DD) [1], can be 

mathematically simple, but it's usage can be very computationally expensive, once the mesh needs 

to be refined in order to achieve accurate results. On the other hand, coarse-mesh methods (nodal 

methods), e.g. Spectral Deterministic Method (SDM) [3,4], spectral Green's function (SGF) [5,6] 

and Response Matrix (RM) [7], may have a more complex implementation, but these methods are 

able to compute the angular fluxes inside large regions with good precision and without the need of 

any mesh refinement. 

In this work, we propose a deterministic numeric method to solve the linearized Boltzmann 

equation applied to neutron shielding problems (fixed-source), denominated Modified Spectral 

Deterministic Method (SDM-M). This is a hybrid method that incorporates the spectral analysis 

used in the SDM to solve the neutron transport equation analytically in homogeneous regions 
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(arbitrary nodes) with the iterative process found in the traditional method DD, known as Source 

Iteration  (SI) [1], in order to solve the angular fluxes in node-edge. This modification in the 

iterative process is the main contribution of this work. Several tests are performed in order to find 

an iterative process with lower CPU time when executing model-problems. 

Hereafter a brief summary of the content that compose this work is presented. In Section 2, the 

neutron transport equation mathematical modelling and its analytical solution are introduced. In 

Section 3, the Modified Spectral Deterministic Method's iterative process is proposed. In Section 4, 

the results of two model-problems using the SDM-M are analyzed and compared to the ones 

obtained with the SDM, SGF, RM, and DD. In Section 5, the results and comparisons presented in 

its previous section are discussed. 

 

2. MATHEMATICAL MODELLING OF NEUTRON TRANSPORT 

EQUATION 

 

The neutron transport equation in an one-dimensional domain  with width , stationary form, 

using the discrete ordinates formulations and  groups of energy, has the form [1] 

 

 

 

(1) 

 

where 𝜎𝑇,𝑔(𝑥) is the macroscopic total cross section in group , the 𝜎𝑆0𝑗
𝑔′→𝑔(𝑥) is the zero-th order 

component of the macroscopic differential scattering cross section from group  to group  and 

𝑄𝑔(𝑥) is the isotropic fixed-source in group . 𝜇𝑚 and 𝜔𝑚 are respectively the discrete directions 

and weights of the Gauss-Legendre quadrature of order N.  The dependent variable 𝜓𝑚,𝑔(𝑥) is the 

neutron angular flux of the  group. The Eq.(1) has prescribed boundary conditions given by 
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(2) 

  

This problem, represented in Eq. (1) may have a hard solution when considering 𝜎𝑇,𝑔(𝑥), 

𝜎𝑆0
𝑔′→𝑔(𝑥) and 𝑄𝑔(𝑥) as space-dependant variables. Thus, the spatial domain  is divided into  

nodes , as shown in Figure 1, with constant physical-material parameters 

 

Figure 1: Discretized spatial domain. 

 

Source: Authors 

 

Thus, Eq.(1) assumes the following form inside an arbitrary node 𝛤𝑗 

 

 

(3) 

 

From Eq.(3), the analytical general solution can be determined in form [5,6] 

 

 (4) 

 

The particular solution component ( ) is given by the system [3,4] 
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(5) 

 

In order to obtain the homogeneous component, let us consider the expression [7] 

 
(6) 

 

where 𝜂 guarantees that the exponent will always assume negative values, avoiding numerical 

instability in model-problems. The parameter 𝜂 is defined as [7] 

 

(7) 

 

We emphasize that the displacement (espace shift) of the exponential argument derives from 

radiative transfer works and was adapted to the problems involving the neutron transport [8,11]. 

Now, substituting Eq. (6) into the homogeneous part of Eq. (3) after some algebra, we obtain 

 

 

(8) 

 

where  represents Kronecker's delta. Equation (8) can be written in a compact form 

 

 
(9) 

 

Solving the system presented in the Eq.(9),  real symmetric eigenvalues ( ) are determined. 

Thus, for each arbitrary node 𝛤𝑗 a set of  linearly independent eigenfunctions is obtained. The 

intra-nodal solution given by Eq.(3) takes the form 
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(10) 

 

where  is a set of arbitrary parameters to be defined in each node. 

 

3. MODIFIED SPECTRAL DETERMINISTIC METHOD 

 

In this section, we present the method Spectral Deterministic Method (SDM-M), which is the 

main contribution of this work. The solution of the neutron transport equation using this method is 

based on two main points: the  parameters as shown in Eq. (10) [3,4] and an iterative process to 

calculate the angular fluxes, based on a modification of the Source Iteration method (SI) [1]. In 

order to illustrate the iterative process that calculates the neutron angular fluxes in each node, an 

example with 3 spatial nodes, based on the spatial grid in shown in Figure 2. The black solid arrows 

represent the boundary conditions and the gray dotted lines represents the initial estimates. 

 

Figure 2: Iterative process - initial condition. 

 

Source: Authors 

 

Once the initial estimates and the boundary conditions are defined, the first step to start the 

iterative process is to calculate 𝛼𝑙, Eq. (10), these parameters can be determined by using the 

incoming neutron angular fluxes in the first node [3,4]. With these values, the next step is to 

calculate the average neutron angular flux with 



 Libotte et al.  ● Braz. J. Rad. Sci. ● 2020 7 

 

(11) 

 

Now, subistitutuing  from Eq. (10) into Eq. (11), we obtain the homogeneous 

components 

 

 
(12) 

 

 
(13) 

 

Now, we set up a computational algorithm to obtain the outgoing node-edge angular fluxes 

 of a 𝛤𝑗 node, knowing the incoming node-edge angular fluxes  and the 

fixed-source of neutrons  inside this node, An illustrative scheme is presented in Figure 3.  

 

Figure 3: Representation of the incoming and outgoing node-edge 

 neutron angular fluxes. 

 
Source: Authors 

 

 The iterative process is similar to the one used in SDM [3,4]. We define as an iteration the 

course in the spatial domain seen in Figure 2, moving over all the nodes. Starting in  until , 

 calculating all the outgoing node-edge angular fluxes . The mathematical 

structure of these calculations, starts by applying the operator  
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(14) 

 

in Eq. (3), considering the arbitrary node 𝛤𝑗 (Figure 3), we obtain the expression 

 

 

 

(15) 

 

After a little algebra, we obtain  

 

 

 

(16) 

 

for , and 

 

 

 

(17) 

 

to . 

When the outgoing node-edge neutron angular fluxes of the last node is computed, we perform 

the calculation of the neutron scalar flux  in every node interface (one interation) using the 

expression 

 

 
 

(18) 
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This iterative process is performed until the maximum value of the norm for the relative 

deviation between two consecutives estimates for the scalar flux energy group 𝜑𝑔(𝑥) does not 

exceed a pre-estabilished value. The relative deviation is calculated using the expression 

 

 

(19) 

 

the variable 𝜉 is a pre-established value. 

 

4. NUMERICAL RESULTS 

 

In this section, we present the results of two model-problems to validate the SDM-M method. 

In both cases, the numerical results of SDM-M are compared to the traditional fine-mesh DD and 

the coarse-mesh methods SDM, SGF and RM.  In the first model-problem, let us consider an 

homogeneous domain with 2 groups of energy and 100 cm of width. The physical-material 

parameters and the boundary conditions are displayed in Figure 4. 

 

Figure 4: Model-problem 1 

 

Source: Author 

 

In model-problem 1 we use the Gauss-Legendre [1] quadrature of orders  and  

and set . The DD method uses a mesh with 500 nodes. The SDM-M and SDM methods 
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were executed with 1 node. The results of the SGF and RM methods were taken from Ref. [3], 

which also simulates the same problem with 1 node per region. The scalar fluxes in the region 

interfaces for both groups are shown in Table 1. 

 

 

 

Table 1: Scalar Fluxes ( )  

  N = 4 N = 16 

Method Group x = 0 cm x = 100 cm x = 0 cm x = 100 cm 

DD
a
 

1 9.12675E-1
c 6.27693E-8 9.12674E-1 6.23009E-8 

2 2.72638E-2 3.83316E-8 2.72636E-2 3.81557E-8 

SDM-M
b
 

1 9.12675E-1 6.27693E-8 9.12675E-1 6.24932E-8 

2 2.72639E-2 3.84425E-8 2.72639E-2 3.82734E-8 

SDM
b
 

1 9.12675E-1 6.27693E-8 9.12675E-1 6.24932E-8 

2 2.72639E-2 3.84425E-8 2.72639E-2 3.82734E-8 

SGF
b
 

1 9.12675E-1 6.27702E-8 9.12675E-1 6.24922E-8 

2 2.72639E-2 3.84431E-8 2.72636E-2 3.82667E-8 

RM
b
 

1 9.12675E-1 6.27692E-8 9.12675E-1 6.24932E-8 

2 2.72639E-2 3.84425E-8 2.72639E-2 3.82734E-8 
a 
500 nodes in region 1. 

 

b 
1 node in region 1.

 

c 
Read 9.12675  10

-1. 

 

The second test measures the average execution time of the SDM, SDM-M and DD methods in 

the solution of the model-problem 1, with quadrature order N = 64 and N = 256.  Here, it should be 

noted that the scalar fluxes generated by these set order quadrature are approximately the same as 

shown in Table 1. This test consists in the execution of each method solving this model-problem 

1000 times, storing each execution time and calculating its average. The results regarding the  

average execution time and iterations number, considering each method, is shown in Tables 2 and 3. 

 

Table 2: Execution average time performance (N = 64) 

Method Average Time ± Standard Deviation Total 
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Iteration 

DD 3.462484 ± 0.214295 1225 

SDM 0.034948 ± 0.028142 2 

SDM-M 0.033017 ± 0.024087 2 

 

 

 

Table 3: Execution average time performance (N = 256) 

Method Average Time ± Standard Deviation Total 
Iteration 

DD 17.455859 ± 1.212007 1225 

SDM 2.206409 ± 0.221716 2 

SDM-M 2.085199 ± 0.300421 2 

 

The results obtained in the performance test for both Gauss-Legendre quadrature orders in the 

first model-problem, shows that the modification in the iterative process of the SDM-M method 

provided a lower CPU time when compared to the SDM and DD.   

In second model-problem, let us consider a domain with 4 regions and 3 distinct material 

zones. Figure 5 shows the physical-material parameters and the boundary conditions. 

 

Figure 5: Model-problem 2. 

 

Source: Author 

The isotropic scattering cross sections   that compose the material zones in this problem are 

shown in Table 4. 
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Table 4: Isotropic scattering macroscopic cross sections (𝜎𝑆0
𝑔′→𝑔

). 

 

Method 

Zone 1 Zone 2 Zone 3 

      

 0.90 0.20 0.75 0.30 0.95 0.60 

 0.05 0.80 0.10 0.99 0.00 0.20 

This problem was solved using the Gauss-Legendre quadrature of order N = 32 , and . 

To execute the DD method, we used a mesh with 200 nodes in the first region, 360 in the second, 

240 in the third and 200 on the fourth one. All the coarse-mesh methods used 1 node per region. 

Similarly as model-problem 1, the results for the SGF and RM methods were taken from Ref. [3]. 

The scalar fluxes for this problem are shown in Table 5. 

 

Table 5: Scalar Fluxes (cm
-2

 s
-1

) 

Method Group 
N = 32 

x = 0 cm x = 20 cm x = 56 cm x = 80 cm x = 100 cm 

DD
a
 

1 7.49899E+0
 c 

3.51557E+0 1.86740E-7 2.68910E-14 1.50010E-18 

2 4.99941E+0 2.55794E+0 1.36574E-7 3.41163E-14 7.85261E-19 

SDM-M
b
 

1 7.49903E+0 3.51557E+0 1.86413E-7 2.72811E-14 1.60046E-18 

2 4.99943E+0 2.55794E+0 1.37074E-7 3.45835E-14 8.38952E-19 

SDM
b
 

1 7.49902E+0 3.51557E+0 1.86413E-7 2.72811E-14 1.60046E-18 

2 4.99943E+0 2.55794E+0 1.37074E-7 3.45835 E-14 8.38952E-19 

SGF
b
 

1 7.49898E+0 3.51553E+0 1.86408E-7 2.72790E-14 1.60056E-18 

2 4.99940E+0 2.55798E+0 1.37052E-7 3.45813E-14 8.38935E-19 

RM
b
 

1 7.49898E+0 3.51554E+0 1.86416E-7 2.72807E-14 1.60069E-18 

2 4.99941E+0 2.55800E+0 1.37057E-7 3.45833E-14 8.39003E-19 
a 
200 nodes in region 1, 360 in region 2, 240 in region 3 and 200 in region 4.

 

b
 1 node per region.

 

c
 Read as 7.49899 x 10

 0 

 

 
Figure 6 presents the numerical results in Table5 in graphic format to scalar fluxes based in 

model-problem 2. 
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Figure 6: Scalar fluxes. 

 

Source: Author 

 

In this model-problem, the algorithm was executed 1000 times for each method, with 

quadrature order N = 128 . The results of the average execution time and the number of iterations 

are shown in Table 6.  Again, the scalar fluxes generated by these set order quadrature are 

approximately the same as shown in Table 5, with N = 32. 

 

Table 6: Execution average time performance (N = 128) 

Method Average Time ± Standard Deviation Total Iteration 

DD 14.142665 ± 0.296941 549 
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SDM 3.267299 ± 0.165041 2 

SDM-M 3.027089 ± 0.150199 2 

 

As in the previous model-problem, SDM-M presented lower CPU time compared to the others 

methods.  The numerical results presented in the problem-models 1 and 2, shows that SDM-M can 

archieve the same accuracy as the fine-mesh methods DD and the coarse-mesh method SDM, SGF 

and RM. 

 

5. CONCLUSIONS 

 

In this work, a new methodology to calculate neutron angular fluxes in shielding problems was 

proposed, called Modified Spectral Deterministic Method, using the linearized Boltzmann equation 

in the discrete ordinates formulation, considering multigroup, one-dimensional and stationary form. 

The results were compared to the coarse-mesh methods SDM, RM and SGF, and the fine-mesh 

method DD. 

In the first model-problem, SDM-M obtained relatively accurate results for both Gaussian-

quadrature orders used in the solution, within the predefined threshold adopted for the iterative 

process. As in model-problem 1, the SDM-M obtained accurate results for the neutron scalar fluxes, 

when compared to the other methods. 

In this paper, we are concerned with investigating the accuracy and computational cost of the 

analyzed algorithm, which provides an alternative form of solution of the neutron transport equation 

in the discrete ordinates formulation, in comparison with the coarse-mesh method SDM. Based on 

the presented numerical results, it is concluded that: SDM-M presents almost the same precision of 

the numerical results obtained by SDM. Second, the CPU time required to compute the  results 

using SDM-M is slightly lower, in comparison with SDM. Thus, the differences between the two 

methods, regarding the performance, will need further analysis. 

For future works, we intend to implement an arbitrary degree of scattering cross section in the 

method, and study the absortion rate and the neutron leakage. 
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