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ABSTRACT 

 

We describe in this work the application of the modified power method for solving the multigroup neutron 

diffusion eigenvalue problem in slab geometry considering two-dimensions for criticality global calculations. In 

order to solve this problem a modified power method is used to obtain the dominant eigenvalue (effective 

multiplication factor) and its corresponding eigenfunction (scalar neutron flux). The innovation of this work is 

solving the neutron diffusion equation in analytical form for each new iteration of the power method. For solve 

this problem we propose to apply the Finite Fourier Sine Transform on one of the variables obtaining a 

transformed problem which is resolved by well-established methods for ordinary differential equations. The 

inverse Fourier Transform is used to reconstruct the solution for the original problem.  In order to maintain the 

analytical character for the solution in each new iteration of the power method the neutron flux is reconstructed 

through a polynomial interpolation. The methodology is implemented to solve a homogeneous and heterogeneous 

problems and the results are compared with works presents in the literature. 

Keywords: neutron diffusion equation, eigenvalue problem, modified power method, polynomial interpolation. 
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1. INTRODUCTION 

 

The neutron population distribution in a nuclear reactor varies according to its rate of neutron 

production and its rate of neutron losses. When the production of neutrons exceeds the losses it is 

said that the reactor is in the supercritical state. When the neutron population remains steady with 

successive generations, it is referred to as a critical state and when losses dominate the production, 

it is considered subcritical state. 

The criticality of a nuclear reactor is obtained by solving the neutron diffusion eigenvalue 

problem. The solution of this problem, in addition, to provide the critical eigenvalue, provides the 

neutron flux distribution and the fractional power by region. 

One of the first methods used for solving this eigenvalue problem was the finite difference 

method (FDM), however as it requires very mesh points to model accurately, it becomes a bit slow 

from the computational point of view [1]. Over time other methodologies have been implemented 

for solving the neutron diffusion eigenvalue problem, as for example: Finite Element Method [2], 

[Pseudo-Harmonics Expansion Method [1], Finite Volume Method [3], Lagrange Polynomial 

Algorithms (LAP) using the same approach in FDM [4], Taylor Series Expansion Method [5], 

Isogeometric Analysis [6], Integral Transform Techniques [7] and Generalized Integral Transform 

Technique (GITT) combined with Laplace Transform given by [8] and Nodal Method [9]. 

In order to develop method that can solve the eigenvalue problem and predict the behavior of 

the neutron flux in the nuclear reactor core with accuracy and reliability, this work proposes to 

apply the modified power method in the multigroup neutron diffusion eigenvalue problem in slab 

geometry considering two spatial dimensions. The main idea is to solve the neutron diffusion 

equation in analytical form for each iteration of the power method. As the equations are partial 

differential equations applies the Finite Fourier Sine Transform in one of the spatial dimensions 

falling back on a transformed problem decoupled by the power method. The transformed problem is 

solved by well-established methods for ordinary differential equations. For the neutron flux 

expression always remain in a standard form for all iterations, it is proposed that the expression be 

reconstructed through a polynomial interpolation.  
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2. MATHEMATICAL FORMULATION 

 

2.1 The neutron diffusion equation 

The steady state multigroup neutron diffusion equation considering homogeneous nuclear 

parameters can be written as [9]: 

 
G G

2

g g Rg g g g fg g sg g g
g 1 g 1 g geff

1
D

K
            

    

     
;

, (1) 

where  

, ,g 1 G   are neutron energy groups; gD is the diffusion coefficient of the energy group g ; g is 

the neutron scalar flux of the energy group g ; Rg is the removal cross section of the energy group 

g ; effK  is the effective multiplication factor; g  is the integrated fission spectrum of the energy 

group g , g  is the average number of neutrons emitted by fission of the energy group g ; fg  is 

the fission cross section of the energy group g ; sg g   is the scattering cross section from energy 

group g   to g .  

In this work we consider a rectangular geometry in which the most usual boundary conditions 

for the system of equations (1) can be written in the form: 

 0
g

g
n


 


 


          (2) 

where   and   are constants with 0    and n depends on the contour. 

Without loss of generality, the above equation for two dimensions in Cartesian geometry and 

constants nuclear parameters by region becomes: 
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  ,    (3) 

where 1r , ,R , with r  belonging to domain   and contour xy  satisfying 10 x L   and 

20 y L  , 
 r

gD  is the diffusion coefficient of the energy group g  in the region r; 
   r

g x, y  is the 
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neutron scalar flux of the energy group g  in the region r ; 
 r

Rg  is the removal cross section of the 

energy group g  in the region r; 
 r

fg   is the fission cross section of the energy group g   in the 

region r; 
 r

sg g   is the scattering cross section from energy group g   to g  in the region r.  

The partial differential equations above on a domain   with boundary   satisfies the 

following usual boundary condition in reactor physics: zero-flux on the external borders and 

reflective condition in the reactor center.  

In addition to the boundary conditions, there appear the piecewise open interface conditions, 

that combine the solutions of adjacent regions ( r  and r , respectively) to one unique solution of the 

whole problem known as flux and current continuity given by: 

   

       

xy xy

xy xy

r r

g g

r r r r

g g g gD D



 

 

 



  

 

 

 

 
 .                   (4) 

For the development of this work is also considered the following simplifications: 

 problems without scattering from lower energy to higher energy groups (up-scattering); 

 two energy groups ( 1 2g   ) . 

Thus, the equations (3) can be rewritten in the following matrices system by region as: 
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 and source term 

given by: S FΦ . 
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2.2 Power method 

In order to solve the eigenvalue problem, we propose to use a well-known iterative source 

method known power method. The basic steps this method are: 

 Initial estimate for neutrons fluxes, 
   1

1 x y  , 
   1

2 x y   and the eigenvalue, 
 1
effK ; 

 Solve the equation system: 
 

 
 1 1i i

i

effK


MΦ S ; 

 Update of the source term, 
 i

S ; 

 Update of the eigenvalue, 
   

 

 

1

1

i

i i

eff eff i

dx dy

dx dy
K K










S

S
; 

  Stop criterion: 

   

 

   

 

1 1

1 21 1

i i i i

eff eff

i i

eff

K K

K

dx dy

dx dy

 

 

 
 





S S

S
,ò ò ; 

  If the changes are greater than the stop criterions, then set and return at step-2, otherwise 

end the iterations. 

This algorithm is implemented to solve the eigenvalue problem in a classic way. In the 

subsection following we are going to present the modified power method. 

 

2.3 Modified power method 

The innovation of this work is to solve the neutron diffusion equations in analytical form for 

each new iteration of the power method.  

The diffusion equation system as it stands is unlikely to be solved exactly in closed and finite 

analytical form. In order to introduce a simplification which nevertheless permits to control 

convergence in a strict mathematical sense, one may make use of the physical resolution scale set 

by the inverse of the largest macroscopic cross-section value of the problem in consideration and 

segment the sheet into several regions  1r , ,R , with linear dimensions smaller than the mean 

free path [7].  

We suppose that in a stationary regime that dependence on the specific energy group, the 

physical coefficients are now “locally” homogeneous, i.e. constant in a specific region r 



 Zanette, et. Al.  ● Braz. J. Rad. Sci. ● 2021 6 

 

 r r r r
g g rg rg fg fg gg ggD D , , ,            . The only quantity that preserves its 

original dependence on the coordinates is the scalar neutron flux, which is determined in its 

analytical form for each region     rx, y x, y  . 

Thus, it is proposed to apply the Finite Fourier Sine Transform (FFST) on one of the spatial 

variables obtaining transformed problem, falling into a decoupled assembly of ordinary differential 

equations (ODE's). This type transform (FFST) is applied because the domain is finite and as the 

most problems are considered null external frontiers your inverse is easily implemented. 

One way to solve these equations is to consider symmetry in relation to the axes and apply an 

integral transform to one of the spatial dimensions, for example y, although this simplification is not 

always possible. 

In this article we chose to apply the Fourier Transform Method. Without loss of generality, we 

are going to demonstrate the method with the Finite Fourier Sine Transform (FFST) 0   

boundary conditions both in 0x   and 1x L  or  0y   and 2y L . 

The FFST of a continuous function   x, y in a finite interval 20 y L    is  defined  by: 

      
2

0
2

, , , sin
L

s

n y
x y x n x y dy

L


  

 
   

 
ˆF  ,     (6) 

where  ,x n̂  is the transform neutron flux and n is an integer. Once the FFST is applied to the y-

coordinate, we fall into a set of second-order ordinary differential equations at x. When applying the 

Finite Fourier Sine Transform to the variable y of the proposed problem, a system of ordinary 

differential equations (ODE's) is established. Without loss of generality, the application of (FFST) 

in (3) for each region considering homogeneous parameters, two energy groups, without up-

scattering and with zero flux in the boundary results in: 
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The ODE's that arise from the application of FFST are resolved by well-established methods in 

the literature. After obtaining the EDO's solutions, the inverse Fourier transform is used to 

reconstruct the solution for the original problem. This inverse transform is given for a series: 

    
1

2
g g

n

n y
x, y x,n sin

L L


 





 
  

 
 ˆ ,  (8) 

where L is thickness of domain in y. 

This sum must be truncated in a given n, when properly chosen, it results in small loss of 

information. For this, we propose as a stop criterion the sum of the module of the element that is 

being added as: 

  3
2

g ix ,n ˆ ,         (9) 

where ix  is the point at which the sum of the inversion is being calculated and 3  is a very small 

arbitrary constant. By inspection, it is observed that with the increase n the contributions decrease, 

making the solution convergent in each point of the domain. 

It is known, the power method is an iterative source method in which is updated by the neutron 

flux expression of previous iteration. With the successive iterations the flux expression becomes 

ever larger and more complex, since the flux is express in analytical form. 

At each iteration of the power method it is necessary to update the source term with the neutron 

flux and the effK  of the previous iteration. Thus in all iterations new terms are added which 

becomes the process very laborious. To overcome this problem is proposed to reconstruct the 

neutron flux in standard form by polynomial interpolation in x and y and this new neutron flux 

updates the source term of the next iteration. 

Therefore, the proposed alternative to overcome this problem and reconstruct the expression of 

flux, with each iteration, always in the same standard form. For this, one must evaluate to express 

the neutron flux in equally spaced points and then interpolates them in a polynomial of the same 

order in all iterations given by: 

 
1 1

N M

n n m m

n m

x, y c x d y
 

  
   
  
   ,     (10) 
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where nc  and md  are constants and N and M represent the order of the polynomials in x and y, 

respectively. To find the constants  nc  and md  in a unique way, the boundary conditions and current 

and flux continuity interfaces are used apply in order to establish a determined linear system.  

To solve the linear system generated by the polynomial interpolation QR decomposition method 

was used. The choice this method is due to the fact that the number of points inside each sub region 

changes according to the chosen interval and QR decomposition, because in the system linear AX = 

B, the matrix A most of the time is no square. Another aspect favorable is that the matrix R is a 

superior triangular matrix and better conditioned than the matrix A, and Q and an orthonormal 

matrix [10].  

 

3. RESULTS AND DISCUSSION 

 

3.1 Homogeneous Case Test 

In this section are compared the numerical results with work presented by [8]. This problem is 

composed for a square homogeneous region of 6 cm thickness, two energy groups (fast and 

thermal), zero-flux boundary conditions on the exterior,     g gx,6 6, y 0    , and reflection 

boundary conditions on the planes of symmetry, 
   g gx,0 0, y

0
x y

  
     

. The remaining 

parameters are given in Table 1. 

 

Table 1: Nuclear parameters for the homogeneous problem. 

Group gD  Rg  fg  sg g  

1 1.6497 0.02309 0.005008 0.00000 

2 0.4754 0.07886 0.09713 0.01423 

 

For use the Finite Fourier Sine Transform is needed that the boundaries be all null and the 

domain be non-negative. Since boundary conditions are reflective at zero, thus it is proposed to 

expand the problem for others quadrants displaced to the right and up as Figure 1. 
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Besides that in the proposed method, the neutron flux must be interpolated in a standard form in 

all iterations. In this problem is used the following interpolation: 

   2 3 2 3 4
g 1 2 3 4 5 6 7 8 9c c x c x c x c c y c y c y c y         . (11) 

 

Figure 1: Domain adapted to solve the problem. 

 

 

This form given by (11) is the best combination of agreement of the results and computational 

efficiency to get the effK = 0.0585997, while the value obtained by [8] is 
ref
effK = 0.0585989. It can 

be observed a precision of 5 digits with the reference adopted, which suggests an excellent 

agreement for global calculations in reactor physics. It is remembering that the domain has been 

expanded and dislocate, thus, after obtain solution, it must turn back to its original position.  

In the Table 2 are presented the normalized fast neutron flux, these are compared with those 

obtained by [8] represented by subscript “ref”. In addition, we calculate the relative error with 

respect to the reference as: 

Relative Error = 
   

 

ref

ref

x, y x, y

x, y

 


.     (12) 
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Table 2: Comparation of the quantitative results of fast neutron flux. 

y  1 0, y   1 0ref , y  Rel. 

error 
 1 3, y   1 3ref , y  Rel. 

error 

0.0 1.0000000 1.00000 0.000000 0.7071068 0.70710 9.617e-06 

1.5 0.9238795 0.92388 5.412e-07 0.6532815 0.65327 1.760e-05 

3.0 0.7071068 0.70711 4.525e-06 0.5000000 0.49999 2.000e-05 

4.5 0.3826834 0.38268 8.885e-06 0.2705980 0.27388 1.198e-02 

6.0 0.0000000 6.1e-17 - 0.0000000 6.3e-17 - 

 

Moreover, in Fig. 2 and Fig. 3 are plotted the graphs 2D and 3D for the fast and thermal neutron 

flux, respectively. 

 

Figure 2: The fast and thermal neutron scalar flux at y = 0. 
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Figure 3: Fast and thermal neutron flux distributions along the domain. 

 

 

3.2 Heterogeneous Case Test 

This problem is composed of a heterogeneous medium with two regions and two energy groups 

(fast and thermal), where Region 1 is a square with measures ( 0 10x cm   and 0 10y cm  ) and 

Region 2 is a square with measures (10 20cm x cm   and 0 10y cm  ). For both regions are 

considered zero-flux boundary conditions on all contours. The parameters are based on the 

reference [11] and presented in the Table 3.  

 

Table 3: Nuclear parameters for the heterogeneous problem. 

Mat. Group gD  Rg  fg  sg g  

1 1 1.4 0.020 0.007 0.00 

1 2 0.4 0.150 0.200 0.01 

2 1 1.3 0.018 0.003 0.00 

2 2 0.5 0.050 0.060 0.01 
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Similarly, to the homogeneous case, the form given by (11) is the best combination of 

agreement of the results and computational efficiency to get the effK = 0.075303, while the value 

obtained by the classic nodal method developed in the same spirit of [11] is 
ref
effK = 0.075284.  It can 

be observed a precision of 3 digits with the reference adopted, which suggests a good agreement for 

global calculations in nuclear reactor physics. In the Table 4 and Table 5 are presented the thermal 

and fast neutron flux. These are compared with those obtained by classic nodal method represented 

by subscript “ref”. In addition, we calculate the relative error with respect to the reference as Eq. 

(12).  

It is worth noting that since the boundary conditions are null across the border, it is not 

necessary to adapt the contours for the application of the FFST.  

 

Table 4: Comparation of the quantitative results of fast neutrons fluxes. 

y  1 5, y   1 5ref , y  Rel. 

error 
 1 15, y   1 15ref , y  Rel. 

error 

0.5 0.1564345 0.1546627 1.146e-02 0.0557265 0.0568993 2.061e-02 

1.5 0.4539905 0.4488486  1.146e-02 0.1617245 0.1651281 2.061e-02 

2.5 0.7071068  0.6990981 1.146e-02 0.2518918 0.2571930 2.061e-02 

3.5 0.8910065 0.8809150 1.146e-02 0.3174022 0.3240821 2.061e-02 

4.5 0.9876883 0.9765018 1.146e-02 0.3518431 0.3592477 2.061e-02 

 

Table 5: Comparation of the quantitative results of thermal neutrons fluxes. 

y  2 5, y   2 5ref , y  Rel. 

error 
 2 15, y   2 15ref , y  Rel. 

error 

0.5 0.0075949 0.0075057 1.188e-02 0.0055640 0.005676   1.973e-02 

1.5 0.0220414 0.0217823  1.189e-02 0.0161474 0.0164723 1.972e-02 

2.5 0.0343303 0.0339267 1.190e-02 0.0251502 0.0256562 1.972e-02 

3.5 0.0432586 0.0427501 1.189e-02 0.0316911  0.0323287  1.972e-02 

4.5 0.0479526 0.0473889 1.190e-02 0.0351298 0.0358366 1.972e-02 
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It can be observed for both fast and thermal neutron flux a relative error in the order of 210  for 

the points considered in the problem, which is good accuracy in nuclear reactor physics. For 

illustration the thermal and fast neutron flux 3D graph is shown in Figures 4 and 5.  

 

Figure 4: Fast neutron flux distributions along the domain. 

 

 

Figure 5: Thermal neutron flux distributions along the domain. 
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4. CONCLUSION 

 

We describe in this paper a modified Power Method to solve the multigroup neutron diffusion 

eigenvalue problem in slab geometry considering two-dimensions. The proposed methodology was 

successfully developed to calculate the criticality of a nuclear reactor and obtaining the behavior of 

the neutron flux. The main contribution of this work relies on analytical character of the solution by 

Finite Fourier Sine Transform in each iteration of the known Power Method. 

This modification of the Power Method provided excellent results when compared with one 

presented in the literature. It should be noted that the interpolation in each iteration has a standard 

form that provides the best result and can be adjusted for different configurations and neutron flux 

distribution.  

In the future we intend to extend this methodology for more complex problems, for example, 

multidimensional multilayer space kinetics problems. We are now working in these directions and 

we plan to report the results after they are fully tested.  
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