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ABSTRACT 

In this work, we used a modified Picard’s method to solve the Multigroup Neutron Space Kinetics Equations 

(MNSKE) in Cartesian geometry. The method consists in assuming an initial guess for the neutron flux and 

using it to calculate a fictitious source term in the MNSKE. A new source term is calculated applying its 

solution, and so on, iteratively, until a stop criterion is satisfied. For the solution of the fast and thermal 

neutron fluxes equations, the Laplace Transform technique is used in time variable resulting in a first order 

linear differential matrix equation, which are solved by classical methods in the literature. After each 

iteration, the scalar neutron flux and the delayed neutron precursors are reconstructed by polynomial 

interpolation. We obtain the fluxes and precursors through Numerical Inverse Laplace Transform by Stehfest 

method. We present numerical simulations and comparisons with available results in literature. 

Keywords: Neutron Diffusion Equation, Source Iterative Method, Laplace Transform, Stehfest Algorithm, Polynomial 

Interpolation. 
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1. INTRODUCTION 

 

The iterative source method has been applied with great success in the solution of the neutron 

transport equation (WILLERT, 2014) (ADAMS, 2012) (DANIELLA, 2017) and in the solution of 

the steady-state diffusion equation by (ZANETTE, 2017). In the last years many works have been 

developed in the search for solutions to the problem of kinetic neutron diffusion equation among 

them, it is possible to emphasize the works (NAHLA, 2012) (CEOLIN, 2011) (CORNO, 2008). In 

this context, the iterative source method has been used to solve the diffusion kinetic equation. The 

method consists of estimate an initial distribution for the source term of the fast flux equation de-

coupling the system and getting it possible to solve the equations separately. It should be noted that 

this occurs only in systems without up scattering. To solve the MNSKE, the authors apply the La-

place Transform, which transformed the set of partial differential equations into a set of ordinary 

differential equations (ODE's). These ODE's are solved from classical methods present in the litera-

ture. To return the functions to the frequency domain for time domain a numeric inversion of the 

Laplace was used for. After each iterative process, the term source is updated with the previous ex-

pressions of neutron fluxes and delayed neutron precursors. Due to the use of the numerical inverse 

transform, it is necessary to reconstruct the fluxes and concentrations through an interpolation. The 

authors prefer to use a polynomial interpolation in order to always maintain a standard structure for 

all iterations. This iterative process continues until a stop criterion is established.  

 

2. SPATIAL KINETICS EQUATIONS OF THE MULTIGROUP NEU-

TRON DIFFUSION THEORY 

 

Starting from the Neutron Diffusion Spatial Kinetics equation for two energy groups, six groups of 

delayed neutron precursors, nuclear parameters not dependent on time and space, without external 

source and one-dimensional Cartesian geometry we have:  
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with 1,...,6i = , subject to the following boundary conditions: 
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where W represents the source term of the fast flux equation. This system of equations is solved 

through an Iterative Source Method (ISM). The method is to provide an initial distribution for the 

source term W of the fast flux equation becoming the equation system decoupled. Applying the 

Laplace Transform (LT) in the first equation of (1) we have the fast-flux equation transformed be-

low: 
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The constants 1 and 2  are obtained by replacing the boundary conditions given in (2). 
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and 

     2 1 1F = − −                     (7) 

Substituting the constants in the fast flux equation has the transformed equation written as: 
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To solve (8) a numerical inversion has been used through the Stehfest algorithm (HASSANZA-

DEH, 2007). After the numerical inversion, a polynomial interpolation of the form: 
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where 1 2 3 4 5 6, , , , ,y y y y y y are the coefficients of the interpolated polynomial. 

Substituting ( )1 ,x t  and applying the Laplace Transform technique in the second equation of (1) 

we can solve the thermal flux equation given by 
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Therefore, ( )2 ,x s  has solution given as follows: 
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The constants 3 and 4  are determined analogously to the constants 1 and 2 . Thus, the trans-

formed thermal flux can be written as: 
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By applying the Laplace Numerical Inverse Transform in (13) and interpolating in a polynomial 

with the same format of (9) we can solve the equations of the concentrations given by (1). Replac-

ing ( )1 ,x t and ( )2 ,x t  into the equations of concentration and applying the Laplace Transform 

technique we have: 
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Where ( ),0iC x are obtained as follows: 
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where 1: 6.=i   . 

Similarly, the methodology used for the fast and thermal fluxes can be solved (14) by applying the 

Numerical Inverse Laplace Transform and interpolating the solutions of the concentrations in the 

same polynomial form given by (9). 

Then the source term W of the fast flux equation is updated (1) with the fluxes  
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Therefore, we can solve the system of equations of (1) through an iterative process described as 

follows: 
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2. The fast-flux equation is solved; 

a. Apply to LT in the fast flux equation; 

b. Apply to Numerical Inverse Laplace Transform; 

c. The flux is interpolate. 

3. The thermal flux equation is solved; 
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a. Replaces ( )1 ,x t  Interpolated in the thermal flux equation; 

b. Apply to LT in the thermal flux equation; 

c. Apply to Numerical Inverse Laplace Transform; 

d. The flux is interpolate. 

4. Solve the equations of the concentrations; 

a. Replaces ( )1 ,x t e ( )2 ,x t Interpolated in the concentration equations; 

b. Apply to LT in the equations of concentrations; 

c. Apply to Numerical Inverse Laplace Transform; 

d. The concentrations are interpolate. 

5. Stop criterion test 
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6. If the stop criterion is satisfied the process is terminated otherwise the index k is updated is 

returned to item 1. 

 

3. RESULTS AND DISCUSSION 

 

To validate the methodology proposed in this work we were used an algorithm implemented in the 

Scilab platform applied to a problem with two groups of energy and six groups of delayed neutron 

precursors with domain 0 160 x cm   , 0,8520306528effk =  and nuclear parameters given by the 

tables 1and 2. 

Table 1: Nuclear Parameters. 

Parameters Group 1 Group 1 

[cm]D  1,0  0,5  

[cm/ s]v  71,0 10x −  
53,0 10x  

1Σ [cm ]a

−   0,02  0,08  

1[c ]Σ mf −
 0,005  0,099  

1

1 2[cΣ m ]−

→
 0,01  0  
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Table 2: Parameters related to delayed neutrons. 

i  i  1

1[s ] −  

1  0,00025  0,0124  

2  0,00164  0,0305  

3   0,00147  0,1110  

4  0,00296  0,3010  

5  0,00086  1,1400  

6  0,00032  3,0100  

 

As the initial condition the solution was used for the steady-state diffusion equation solved by 

(ZANETTE, 2017). The Tables 3 and 4 show the numerical convergence of the fast and thermal 

flows in 1=t s  and 80 cm with the decrease of   , respectively. In the Table 3 to 4 equal to 
510−
 we 

have a 6-digit concordance comparing with 
810−
, already for 

710−
 has an 8-digit agreement, which 

indicates that as   tends to zero the solution tends to stabilize. It can be observed in Table 4.   

 

Table 3: Numerical stability of the fast neutron flux. 

  
2

1

1[cm s ] − −  

310−
 0,000905058  

510−
 0,000889528  

610−
  0,000888144  

710−
 0,000888022  

810−
 0,000888010  
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Table 4: Numerical stability of the thermal neutron flux. 

  
2

2

1[cm s ] − −  

310−
 0,000111869  

510−
 0,000109938  

610−
  0,000109766  

710−
 0,000109751  

810−
 0,000109749  

 

In the Table 5 we have the values of the fast and thermal fluxes for various times. As the stopping 

criterion of the algorithm was used 
810−= for both the fast flux and the thermal flux. For this case, 

the maximum allowed error was 
810−
 in 80x = cm.  

 

Table 5: Parameters related to delayed neutrons. 

(s)time  2 1

1[cm s ] − −  2

2

1[cm s ] − −  

1  0,000879889  0,000108745  

2  0,000848293  0,000104841  

3   0,000816697  0,000100937  

4  0,000785101  0,000097032  

5  0,000753505  0,000093128  

6  0,000721908  0,000089223  

7  0,000690313  0,000085319  

8  0,000658716  0,000081414  

9  0,000627120  0,000077510  

10  0,000595524  0,000073606  

 

In the Figures 1 and 2 we have the graph of the fast and thermal flux respectively as a function of 

the spatial variable. 
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Figure 1: Fast Neutron Flux 

 

 

Figure 2: Thermal Neutron Flux 
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4. CONCLUSION 

Analyzing the previous results, it can be observed that the methodology proposed in this article is 

promising and important in the solution of neutron space kinetics problems. Through the source 

iterative method, the system equations become decoupled which allows them were resolved sepa-

rately becoming the solution of the problem simpler. Another important characteristic with respect 

to the methodology proposed is the achievement of a semi-analytic solution at each iteration. As 

future perspectives for the work, it is intended to apply the same methodology to the multi-region 

problem and to analyze the convergence of the method. 
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