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ABSTRACT 

 
In this article, we present an application of the coarse-mesh Deterministic Spectral Method (SDM) to generate 

multigroup angular fluxes in one-dimensional spatial domains using the neutron transport stationary equation, 

in the formulation of discrete ordinates (SN), considering isotropic scattering source. After obtaining the analyti-

cal solution of the SN equations, we replace the integral term of the scattering source in the original neutron 

transport equation. Thus, we obtain analytically two expressions for angular fluxes in the multigroup formula-

tion, considering the neutron propagation in the positive ( 0 ) and negative ( 0 ) directions, presenting a 

meaningful reduction in the computational time of simulations of typical neutron shielding problems. 
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1. INTRODUCTION 

 

The neutron transport analysis has the physical model based on the migration of these particles 

inside a material media and on the probability of their interaction with the nuclei of the atoms of the 

media. The properties of the materials where the neutrons migrate are characterized phenomenolog-

ically in terms of the cross sections determined theoretically or experimentally [1,2]. The physical 

phenomenon of transport of neutral particles in a material medium is of interest in various scientific 

applications, e.g., nuclear reactors, shielding calculations, radiation protection, nuclear medicine 

etc. In all, there is a need for an accurate description of the phenomenon of particles transport into 

material media. 

The computational modeling is presented as a tool capable of collaborating to solve the prob-

lems that fall into systems of integral equations, partial differential equations or ordinary differential 

equations of high number of unknowns, making use of numerical methods and construction of 

models from of simplifying hypotheses to obtain response. The consideration of an approximation 

of the transport equation dependent on the energy variable is necessary for more realistic calcula-

tions of the neutron transport. The multigroup approach, the most common method for discretiza-

tion of the energy variable, consists in dividing the energy interval into contiguous energy groups 

[1-3]. 

The fixed-source problems, also known as shielding calculations (deep penetration problems), 

mainly involve the transport of particles through coarse "shields" that can cause significant absorp-

tion or scattering of neutrons, resulting in changes in the energy and direction of these particles at 

energy intervals and/or localized spatial regions can be extremely small and consequently a large 

number of experiments (histories) and computational times are required (compared to deterministic 

methods) to achieve statistically reliable results if the Monte probability method is used [4,5].  

Thus, in this paper we use the deterministic method of discrete ordinates (SN), proposed by Wick 

[6] and Chandrasekhar [7], a classic method that continues to be used to solve transport equation in 

several applications. It has its basis in the discretization of the independent angular variable being 

the integral of the source term approximated by a numerical quadrature, thus transforming the 
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transport equation into a system of differential equations that can be solved by numerical or analyti-

cal approaches [3]. 

A deterministic approach to neutron shielding problems (source-fixed) has reached great inter-

est in recent years. We can cite as an example the MOC [8,9], cf., Method of Characteristics, the 

traditional polynomial methods [10-11] and spectral nodal methods, e.g., the SGF method [12-13], 

cf. spectral Green´s function, the RM method [14], cf., Response Matrix and SDM [15-17], cf., 

Spectral Deterministic Method, that significantly reduce the execution times of the computational 

codes used in these models, presenting good accuracy in numerical results. 

The spectral nodal methods, a methodology introduced less than 30 years ago [12-13] are alge-

braic and computationally more laborious than traditional deterministic fine-mesh numerical meth-

ods, e.g., the DD, cf., Diamond Difference [3], but present more precision in the solutions numeri-

cal values for relatively fine spatial nodes; for this reason, these numerical methods and their possi-

ble algorithms for iterative and direct solution schemes have been the object of studies in recent 

years. 

The objective of the work is based on the linearized Boltzmann equation, to consider the mul-

tigroup SN equations in a one-dimensional domain with isotropic scattering and to create a mathe-

matic tool capable of analytically solving the original multigroup neutron transport equations to 

obtain values for the angular fluxes in any direction, position x and in g energy group.  This aim is 

achieved through an angular reconstruction of the neutron transport equations in the multigroup 

formulation considering the approximation of angular moments of the scattering source, which is 

expanded in Legendre polynomials in the angular variable, in the multigroup transport equations, by 

the angular moments (scalar flux), obtained from the numerical solution of the equations SN.  Thus, 

the proposal is to solve analytically the neutron transport multigroup equations to obtain values for 

the angular fluxes in any direction, position x and in any energy group used in the model. 

The methodology presented in this work is an extension of that developed in the research     

[18-20] and can be described in simplified form as follows. 

The spectral nodal method SDM [15-17] generates the angular fluxes at the interfaces of a one-

dimensional domain, using Gauss-Legendre quadrature set, in discrete ordinates (SN) multigroup 

formulation, in the neutron transport theory. Once the coarse-mesh solution was obtained with the 

SDM method, we first determined the arbitrary constants of the analytical general solution of the SN 
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equations, treating the term of isotropic scattering source accurately (without approximations) with-

in each spatial node. We then use the angular quadrature formula to estimate the neutron scalar flux. 

We solve the one-dimensional multigroup transport equation analytically, with the term of the scat-

tering source thus approximated. As the SDM method generates solutions completely free from 

spatial truncation error, this analytic reconstruction within in node is quite accurate. 

Aim to obtain the numerical results available in this work, a computational application was de-

veloped (portuguese language) in the MatLab, which streamlined the preparation and execution of 

the model case presented. 

This paper is organizated in form.  In section 2 we describe the mathematical preliminaries 

about SDM method and presented the angular reconstruction expressions to neutron angular flux in 

multigroup equations for positive and negative directions.  In section 3, numerical results to one 

model-problem is presented and Section 4 we explained the conclusion and presented the ideas to 

future papers. 

 

2. MATHEMATIC PRELIMINARIES 
 

Let us consider the stationary multigroup transport equations with isotropic scattering in dis-

crete ordinates formulation described in arbitrary node j  in spatial grid   one-dimentional spatial 

domain D with width L (Figure 1). 

 

Figure 1: Spatial Grid  . 

 

Source: Authors 
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In Eq.(1) x , G represents the number of energy groups and N is the order of the Gauss-

Legendre quadrature set [3] used for the solution of the SN problem. The variable m represents dis-

crete direction of neutron propagation. The parameter Tgj describes the total macroscopic cross 

section of the g-th group; which includes all possible interactions and 
g g

S0 j

  is the zero'th compo-

nents of the macroscopic differential scattering cross section from group g' to group g, respectively 

and gjQ  is the isotropic external source-fixed in the energy group g.  The dependent variable 

m,g (x)  represents the angular flux of particles traveling in the discrete ordinates direction m  

for each group g and m  is the angular weight. The Eq. (1) has the prescribed boundary conditions 

in form. 
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(2) 

 

In Eq. (2) the values of g,mf  and g,mk  are known (prescribed). 

The general solution within in node of the Eq. (1) is expressed as 

 

h p

m,g m,g m,g(x) (x) , m 1: N,g 1: G.      (3) 

 

The superscript p denotes the particular solution with fixed-source and h indicates the homogeneous 

component of the local general solution, which satisfies the system of Eq.(1). The particular solu-

tion 
p

gj , with isotropic fixed-source gjQ , appears in system form [17]. 
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Now, to determine the homogeneous component )x(h
g,m , we consider the expression [17] 

 

,G:1g,N:1m],/)xx(exp[)(a)x( 2/1jg,m
h

g,m     (5) 

 

where 2/1jx   represent left node-edge boundary  j  as shown on Figure 1. Substituting the Eq. (5) 

in homogeneous part of the Eq. (1), we obtain the eigenvalue problem 
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The Eq (6) can be written in the eigenvalue problem in operators form  

 

1
 


a a  . 

(7) 

 

Here, the   is a real matrix of the GN x GN order which generates the N eigenvalues   with ther 

respective linearly independent eigenvectors m,ga ( ) . So, the general analytical solution within in 

node of Eq. (1), appears in form 
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2.1 Espectral Deterministic Method (SDM) 
 

In a very brief way, the SDM method consists of determining the angular outgoing fluxes from 

the initial estimates of the angular incoming fluxes at the nodes, using Eq. (8). Once the boundary 

conditions are known, the domain is traversed, starting with the left side (x = 0), node to node, to 

the right side of the domain (x = L). For each iteration, the following operations are performed: 
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a) we solve the eigenvalues   problem described by Eq. (6), where eigenfunctions m,ga ( )  are 

obtained with their respective eigenvalues; 

b) the constants   are calculated using Eq. (8), considering the angular fluxes incoming in node 

j . After calculating the   constants we proceed to obtain the angular fluxes also using Eq. (8). 

When all nodes of the space domain are crossed over a transport iteration is completed. The 

angular fluxes at the boundaries of the nodes obtained in the iteration will then be used as initial 

estimates for the next iteration. The process will be done, until the pre-established convergence cri-

terion is satisfied. 

The stop criterion establishes that the maximum norm of the difference of the vector scalar 

flux, considering two successive iterations, must be smaller than a pre-established value according 

to expression 
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where )( 1k
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k
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represents the difference between scalar flux vector obtained in the pre-

vious iteration 1k   and the currently executed iteration k. The component for the neutron scalar 

flux appears in the form 
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(10) 

 

A complete description of the SDM method can be found in references [17-19]. 

 

2.2. Angular reconstruction of neutron angular flux in multigroup formulation 

 

With the numerical solutions obtained through the SDM method, as we have seen in the previ-

ous section, we have already determined the constants   of the local general solution we can de-
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termine the analytical solution at each arbitrary node j , in the discrete directions of the chosen SN 

model. From this strategy, we can develop a methodology for obtaining the analytical solutions of 

the original neutron transport equation. The essence of this process is to approximate the angular 

moments of the scattering source, which is expanded in Legendre polynomials in the angular varia-

ble, in the transport equation, by the angular moments (angular flux) obtained from the numerical 

solution of the SN equations seen in Eq (8). With these approximations made in terms of scattering 

source, the proposal is to solve analytically the multigroup neutron transport equations to obtain an 

equation that provides values for the angular fluxes in any angular direction  , position x and any 

group g of energy used in the model. To perform this procedure, we consider the original multigoup 

neutron transport equation [3] in arbitrary node j (Figure 1). 
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(11) 

 

Eq. (11), in spatial node j , has the prescribed boundary conditions in form 
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In Eq. (12) the values of gb  and gc  are known (prescribed). 

The integral term of Eq. (11), considering Eq. (8), can be written approximated as  
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Now, substituting the Eq. (13) in integral term of the Eq. (11), we obtain 
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Using the integral factor Tgjexp( x / )   and dividing the whole equation by   after some alge-

bra one arrives at the form 
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Now, from Eq. (15), we will determine analytical solution as follows. For the positive direc-

tions of the neutron propagation ( 0)  , the Eq. (15) is integrated in the interval 


x
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For the negative propagation directions ( 0)   the Eq. (15) is integrated in the interval 
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In conclusion, Equations (16) and (17) represent the angular reconstruction of the angular flow 

in the positive and negative directions. 

 

3. NUMERICAL RESULTS AND DISCUSSION  

 

In order to demonstrate the validity of the methodology developed in this paper were used one 

characteristic model-problem. The main objectives, with the use of model-problem, were to com-

pare the results obtained by the SDM method against results obtained to angular reconstruction see 

in Eq. (16) and Eq. (17).  We obtain the results for the angular flux reconstruction using a low quad-

rature order, reconstruct directions for the propagation of higher order quadrature, taking into ac-

count the Percentage Relative Deviation (PRD) less than 1%, calculated with expression  
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(18) 
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where VSDM represents the value obtained by SDM method and VREC the value obtained for angular 

reconstruction, using the Eq. (16), for ( 0)   or Eq.(17), for  ( 0)  . 

 

3.1. Model-problem  
 

The model-problem [21] is a homogenous domain with length of 10 cm, with G = 19 groups 

and isotropic fixed-source Q = 0 for all groups.  It is a 10 cm (one region) iron plate with boundary 

conditions prescribe to isotropic angular fluxes incoming equal a unit (x= 0) in the first (g = 1) of 

the nineteen (G = 19) energy groups in range of 50 keV to 1 MeV and vacuum boundary condition 

in  x = 10 cm.  The material parameters is presented in reference [21]. 

The Table 1 presented the results obtained by the SDM for the scalar neutron flux for some en-

ergy groups chosen arbitrarily, compared to those shown in the reference [22], which used the 

coarse-mesh spectral method SGF.  For the solution of the problem we use Gauss-Legendre quadra-

ture order N = 4, with 
610  and one node per region. We emphasize here that the use of the SGF 

method was to validate the SDM method, implemented in the computational application. 

 

Table 1: Scalar fluxes (cm
-2

 s
-1

). 

Group 

(g) 

SGF
 a 

SDM 

0 cm 10 cm 0 cm 10 cm 

1 5.079466e-01
b 

7.400293e-04 5.079466e-01
 

7.400293e-04 

4 1.205968e-02 1.184823e-04 1.205968e-02 1.184823e-04 

7 9.329249e-03 1.001940e-04 9.329249e-03 1.001940e-04 

10 1.364114e-02 1.487979e-04 1.364114e-02 1.487979e-04 

12 2.375113e-02 2.418206e-04 2.375113e-02 2.418206e-04 

15 5.814921e-03 8.959714e-05 5.814921e-03 8.959714e-05 

17 4.101255e-04 6.735422e-06 4.101255e-04 6.735422e-06 

19 4.048850e-06 6.705707e-08 4.048850e-06 6.705707e-08 

a 
Numerical results generated from SIMFAT [21]. 

b
 Read as 5.079466 x 10

-1
. 
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The numerical results obtained for the scalar fluxes using the SDM are the same as those found 

in the reference [22] using the SGF. The SDM method, like the SGF, generates solutions free from 

spatial truncation errors in the interfaces of the domain, independently of the number of nodes used 

by region. 

We present in Table 2 the numerical results to the angular reconstruction of the neutron angular 

fluxes in x = 5 cm (half the domain), using the order of the quadrature 6N   (S6), to calculate the 

  coefficients of Eq. (16), positive ( 0)   and Eq. (17), negative ( 0 ) directions of high order 

quadrature set S8, S16, S32, S64 and S128.  For the reconstruction of the directions in high quadrature 

directions, the results were satisfactory, being below 1% deviation relative in relation of the results 

the SDM method, which we consider acceptable for the experiment.  The angular directions and 

energy group values were chosen at random mode.  In that same experiment, the angular recon-

struction technique was calculated using the quadratute order N = 4, but in some cases relative de-

viation RD was above the 1% stipulated as the maximum limit of the experiment presented. 
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Table 2: Angular flux reconstruction (cm
-2

 s
-1

) to x = 5 cm and N = 6. 

Relation 

 

Position 

(cm) 

Angular  

Direction 

( )  

Group 

(g) 

Angular 

Flux  

 

(VSDM) 

Angular 

Flux 

Eq. (16) 

(VREC) 

Angular 

Flux 

Eq. (17) 

(VREC) 

PRD 

(%) 

 

86 SS   

 

5 

µ1 = + 0.1834346 5 0.0020786 0.0020814 ----- 0.13 

µ3 = + 0.7966665 11 0.0066193 0.0066171 ----- 0.08 

µ6 = - 0.5255324 15 0.0026083 ----- 0.0026109 0.10 

µ8 = - 0.9602899 19 0.0000051 ----- 0.0000051 0.00 

 

166 SS   

 

5 

µ4 = + 0.6178762 17 0.0003700 0,0003707 ----- 0.19 

µ6 = + 0.8656312 14 0.0050979 0,0051053 ----- 0.15 

µ10 = - 0.28160356 3 0.0010381 ----- 0.0010453 0.69 

µ13 = - 0.7554044 9 0.0014360 ----- 0.0014429 0.48 

 

326 SS 

 

 

5 

µ4 = + 0.3318686 4 0.0022828 0.0022872 ----- 0.19 

µ8 = + 0.6630443 10 0.0047291 0.0047370 ----- 0.17 

µ25 = - 0.7321821 14 0.0028237 ----- 0.0028337 0.35 

µ30= - 0.9647623 18 0.0000284 ----- 0.0000285 0.35 

 

646 SS 

 

5 

 

µ8 = + 0.3572202 16 0.0011752 0.0011781 ----- 0.25 

µ27 = + 0.9610088 3 0.0056533 0.0056651 ----- 0.21 

µ47 = - 0.6489655 2 0.0009284 ----- 0.0009354 0.75
 a 

µ61 = - 0.98333623 8 0.0010444 ----- 0.0010500 0.54 

1286 SS 

 
5 

µ15 = + 0.3471177 1 0.0023726 0.0023743 ----- 0.07 

µ44 = + 0.87405278 7 0.0036537 0.0036655 ----- 0.32 

µ81 = - 0.39254023 12 0.0044858 ----- 0.0045057 0.44 

µ108 = - 0.87405278 15 0.0024015 ----- 0.0024097 0.34 

a
 Maximum Percentage Relative Deviation. 
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In Table 3 we show in a simplified way the reduction of the execution time of the simulations 

seen in Table 2.  As can be seen, there was a considerable reduction in the execution time in the 

angular reconstructions with considerable precision of the presented results. This fact generates a 

future perspective for the simulation of more complex problems, considering multidimensional cas-

es, arbitrary degrees of anisotropy and multigroup in energy. 

 

Table 3: Execution time (s). 

Relation Execution Time 

 

(VSDM)  

(s) 

Execution Time 

Eq. (16) or Eq.(17) 

(VREC)  

(s) 

86 SS   2.04  

 

0.35 

( RECV ) 

166 SS   8.09 

326 SS   32.92 

646 SS   131.99 

1286 SS   2270.98 

 

In Figure 3, we show the main screen of the computational application (Simulator) developed 

in the MatLab language. From this screen it is possible to access another screen´s necessary to ob-

tain the numerical results presented in Table 1, Table 2 and Table 3. More details on the operation 

of this application can be found in the reference [23]. 
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Figure 2: Main Screen of Computational Simulator. 

 

Source: Authors 

 

4. CONCLUSIONS 

 

In this paper, we present a numerical technique capable of analytically modeling the original 

neutron transport multigroup equations to obtain the values for the angular fluxes in angular direc-

tion   (positive and negative), position x and g energy group, considering models in one-

dimensional spatial domains, with the isotropic scattering macroscopic cross section.  Using the 

SDM coarse-mesh numerical solution, we first determine the arbitrary constants   of the analyti-

cal general solution of the SN equations within each spatial discretization node; then we obtain an 

expression for the multigroup scalar flux that we substitute into the isotropic scattering source term 

in the original neutron transport equations. We then solve analytically the slab-geometry multigroup 

original transport equation in order to generate analytically two expressions to neutron angular flux-
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es in multigroup formulation, considering the neutron propagation in positive ( 0 ) and negative 

( 0 ) directions. 

The angular reconstruction strategy, using Eq. (16) and (17), for model-problem, allowed us to 

conclude that the results were satisfactory, reaching a relative deviation below 1%, a value consid-

ered acceptable by us in the simulation of this type of problem. The reduction of the CPU computa-

tional cost through angular reconstruction was significant when considering the problems with low 

quadrature order in the calculation of the alpha ( )(   parameters to estimate the angular fluxes in 

directions present in quadratures with higher orders that demand a higher CPU computational cost 

to be obtained. 

Here, we also used a Gauss-Legendre quadrature generator of arbitrary order, which made it 

easier to obtain the data for the simulations presented in the numerical results. Therefore, after ana-

lyzing the numerical results, we conclude the validity of the methodology presented here. 

We propose for future work the extension of this methodology to problems multigroup with ar-

bitrary degree of anisotropy and rectangular Cartesian X. Y-geometry. 

 

ACKNOWLEDGMENTS 
 

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível 

Superior – Brasil (CAPES) – Finance Code 001.  The authors would also like to thank LABTRAN - 

Multiscale Modeling and Particle Transport Laboratory (IPRJ/UERJ). 

 

REFERENCES 
 

[1] DUDERSTADT, J. J.; HAMILTON, L.J. Nuclear Reactor Analysis, John Wiley & Sons, New 

York, 1976.  

[2] BELLl, G.I.; GLASSONE, S. Nuclear Reactor Theory, Van Nostrand Reinhold, New York, 

1970. 

[3] LEWIS, E.E.; MILLER Jr., W.F. Computational Methods of Neutron Transpor, American 

Nuclear Society, La Grange Park, Illinois, 1993. 



 Balbina, et. Al.  ● Braz. J. Rad. Sci. ● 2020 17 

 

[4] HMMERSLEY, J.M.; HANDSCOMB, D.C. Monte Carlo Methods, Springer Netherlands, 

London, 1964. 

[5] BRIEMEISTER, J.F. (Ed.) MCNPT
TM

, A General Monte Carlo N Particle Transport Code. 

Version 4c, Los Alamos National Laboratory, 2000. 

[6] WICK, G.C. Über ebene Diffusionsproblem , Z. Phys. v. 120, p. 702-705, 1943. 

[7] CHANDRASEKHAR, S. On the Radiative Equilibrium of a Stellar Atmosphere. II, Astrophys. 

J., v. 100, p. 76-86, 1944. 

[8] ASKEW, R. A characteristics formulation of the neutron transport equation in complicated ge-

ometries, AEEW-M - 1108, UK, 1972. 

[9] JEVREMOVIC, T.;. VUJIC, J.; TSUDA, K. ANEMONA - a neutron transport code for general 

geometry reactor assemblies based on the method of characteristics and R-function solid model-

er, Ann. Nucl. Energy, v. 28, p. 125–152, 2001. 

[10] BADRUZZAMAN. A. Nodal methods in Transport Theory, Advances in Nuclear Science 

and Technology, J. Lewins and M. Becker Eds, Plenum Press, New York. v. 21, 1990. 

[11] LAWRENCE, R. D. Progress in Nodal Methods for the Neutron Diffusion and Transport 

Equations, Progress in Nuclear Energy, v. 17, p. 271-301, 1986. 

[12] BARROS, R.C. A Spectral Nodal Method for the Solution of Discrete Ordinates Problems in 

one and two Dimensional Cartesian Geometry, Ph.D. dissertation, The University of Michi-

gan, Ann Arbor. Michigan, 1990. 

[13] BARROS, R. C.; Larsen, E.W. A numerical method for multigroup slab-geometry discrete 

ordinates problems with no spatial truncation error, Transport Theory and Statistical Phys-

ics, v. 20, p. 441-462, 1991. 

[14] DA SILVA, O. P., Um Método de Matriz Resposta para Cálculos de Transporte Multigrupo de 

Energia na Formulação de Ordenadas Discretas em Meios Não-Multiplicativos, Tese de Douto-

rado, Universidade do Estado do Rio de Janeiro – IPRJ/UERJ, 2018. 

[15] OLIVA, A.M.; ALVES FILHO, H.; SILVA, D. J.; GARCIA, C. R. Computer Deterministic 

Modelling of Nuclear Problems using Nodal Methods , In Proceeding Series of the Brazilian 

Society of Computational and Applied Mathematics (CNMAC 2016), Gramado. RS, Brazil, 

2016. 



 Balbina, et. Al.  ● Braz. J. Rad. Sci. ● 2020 18 

 

[16] OLIVA, A.M.; ALVES FILHO, H.; SILVA, D. J.; GARCIA, C. R. Spectral nodal methodolo-

gy for multigroup slab-geometry discrete ordinates neutron transport problems with linearly ani-

sotropic scattering, In International Nuclear Atlantic Conference (INAC 2017), Belo Hori-

zonte, MG, Brazil, 2017. 

[17] OLIVA, A.M.; ALVES FILHO, H.; SILVA, D. J.; GARCIA, C. R. The spectral nodal method 

applied to multigroup sn neutron transport problems in one-dimensional geometry with fixed-

source, Progress in Nuclear Energy, v. 105, p. 106-113, 2018. 

[18] MILITÃO, D. S. Um Modelo para a Reconstrução Angular e Espacial Analítica do Problema 

de Transporte Unidimensional de Partículas Neutras Usando um Método Espectro-Nodal, Dis-

sertação de Mestrado, Universidade do Estado do Rio de Janeiro – IPRJ/UERJ (2007). 

[19] OLIVEIRA, F.B.S.; ALVES FILHO, H.; PLATT , G.M.; BARROS, R.C; DOMINGUEZ, D.S. 

Problema Inverso de Reconstrução Analítica Aproximada da Solução da Equação de Transporte 

de Partículas Neutras em Geometria Unidimensional Cartesiana, Anais do XVII CILAMCE. 

03-06 de setembro de 2006, Belém, PA, 2006. 

[20] OLIVEIRA, F.B.S. Problema Inverso de Reconstrução Analítica Aproximada da Solução da 

Equação Monoenergética de Transporte de Partículas Neutras em Geometria Unidimensional 

Cartesiana com Espalhamento Isotrópico, Tese de Doutorado, Universidade do Estado do Rio 

de Janeiro – IPRJ/UERJ, 2007. 

[21] GARCIA, R. D. M; SIEWERT, C. E. Multigroup transport theory. II. Numerical results. Nu-

clear Science and Engineering, v. 78, p. 315-323, 1981. 

[22] CURBELO, J. P.; BARROS, R.C. Simulador de Problemas Físicos e Adjuntos de Transporte 

de Nêutrons na Formulação de Ordenadas Discretas em Geometria Cartesiana Uni e Bidimen-

sional - SIMFAT: Processo no: Br 51 2017 001227-0. 2017. Linguagem: C++; Campo de 

Aplicação: EN-06. MT-06; Tipo do Programa: SM-01. SO-02. TC-01. 

[23] BALBINA, F.T. C. S., Metodologia de Reconstrução Angular do Fluxo Angular de Nêutrons 

na Formulação Multigrupo com Energia com o Modelo das Ordenadas Discretas. Dissertação de 

Mestrado, Universidade do Estado do Rio de Janeiro – IPRJ/UERJ, 2018. 

 

 

 


