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ABSTRACT 

 
In this paper, we propose a numerical methodology for the development of a method of the spectral nodal class that 

generates numerical solutions free from spatial truncation errors. This method, denominated Spectral Deterministic 

Method (SDM), is tested as a study of the solutions (spectral analysis) of neutron transport equations in the discrete 

ordinates (SN) formulation, in slab geometry, multigroup approximation, with linearly anisotropic scattering, consider-

ing a heterogeneous domain with fixed-source. The unknowns in the methodology are the cell-edge, and cell average 

angular fluxes, the numerical values calculated for these quantities coincide with the analytic solution of the equations. 

These numerical results are shown and compared with the traditional fine-mesh Diamond Difference (DD) method and 

the coarse-mesh spectral Green's function (SGF) method to illustrate the method's accuracy and stability. The solution 

algorithms problem is implemented in a computer simulator made in C++ language, the same that was used to generate 

the results of the reference work. 
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1. INTRODUCTION 

 

One of the key requirements for a nuclear reactor development project is to know the accurate 

and detailed prediction of the neutron distribution in space and time, as well as its energy depend-

ence on all components of the reactor. This problem is addressed by the neutron transport theory, 

using the linearized Boltzmann transport equation, which studies the migration of neutrons into the 

material, and obtains its distribution in space, time, and energy [1,2]. The linearized Boltzmann 

transport equation is an integrodifferential equation that is used in realistic neutral particle transport 

calculations, has seven independent variables to describe the average behavior of neutron popula-

tion. In these calculations, it is necessary to consider an approximation for this equation, in which 

the energy variable is discretized in contiguous groups, giving rise to the classical multigroup ap-

proximation [1,2]. 

The analytical solution of the linearized multigroup neutron transport equation is complicated 

except for highly idealized problems. Its exact solution can only be obtained for the less complex 

problems; for more complex problems, were developed numerical methods. These methods have 

been developed for obtaining, approximate but accurate solutions to the radiation shield problems, 

global reactor calculations, and other applications. They allow us to do computer modeling using a 

probabilistic or deterministic approach [1,2]. Deterministic methods usually use a formulation of 

discrete ordinates (SN) [1]. This formulation made a collocation scheme for the angular variables in 

prescribed directions (discrete ordinates) and used angular quadrature sets for the approximation of 

the integral source terms to obtain numerical solutions for the problems analyzed. 

The deterministic approach to neutron shielding problems (source-fixed) has reached a great in-

terest in recent years. We can cite as an example the MOC [3,4], cf., Method of Characteristics, the 

traditional polynomial methods, [5-6] and spectral nodal methods, e.g., the SGF method [7-8], cf. 

spectral Green´s function, the RM method [9], cf., Response Matrix.  This fact served as an incen-

tive for the development of new numerical methodologies, considering the coarse-mesh methods, 

which have great precision in their numerical results with a marked reduction in the execution times 

of their models. 
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 In this paper, we describe and test a new nodal numerical strategy for general multigroup slab-

geometry discrete ordinates problems linearly anisotropic scattering and a prescribed interior 

source. These results are compared with the traditional fine-mesh method Diamond Difference 

(DD) [1] and the coarse-mesh spectral Green's function (SGF) [7,8] according to the model problem 

presented in the numerical results section. 

In the next section, we present the spectral analysis of the multigroup problems in slab geome-

try. In Section 3, the multigroup Spectral Deterministic Method (SDM) for deriving the analytical 

solutions and an iterative method for solving the discretized equations are described. Numerical 

results are shown in Section 4 and a brief discussion about the results obtained in this paper is given 

in Section 5. 

 

2. SPECTRAL ANALYSIS OF THE MULTIGROUP SLAB GEOMETRY 

 

Let us consider an arbitrary spatial grid   in the domain D, as shown in Figure 1, where each 

spatial cell j  has a width jh  and constant multigroup macroscopic cross sections. 

 

Figure 1: Spatial cell j  in a one-dimensional domain D with length H 

 
Source: Author 

 

Now we consider the multigroup neutron transport equation in the discrete ordinates (SN) formu-

lation with linearly anisotropic scattering considering the slab geometry, defined in an arbitrary cell 

j  
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(1) 

 

Here in the equation system (1), we use the conventional notation [1], where x , G represents the 

number of energy groups and N is the order of the Gauss-Legendre quadrature set [1], which is used 

for the solution of the SN problem in this paper.  The value Tgj  describes the total macroscopic 

cross section of the g-th group.  The gg
j0S


  and gg
j1S


  are the zeroth and first-order components of 

the macroscopic differential scattering cross section from group g' to group g, respectively, and gjQ  

is the constant isotropic fixed-source in the energy group g.  The variable )x(g,m  represents the 

angular flux of particles traveling in the direction of the discrete ordinate m  for each group g and 

m  is the quadrature weight. 

The intra-nodal general solution of the Eq. (1) has the form: 

 

p
g

h
g,mg,m )x()x(  , (2) 

 

the superscript p denotes the particular solution with fixed-source gjQ  and h indicates the homoge-

neous component of the local general solution, which satisfies the system of Eq. (1). To determine 

the homogeneous component )x(h
g,m  we consider the ansatz [10] 
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where 2/1jx   represents the left boundary of the cell j .  Substituting Eq. (3) in the homogeneous 

part of Eq. (1), and making the source gjQ  equal to zero, after a little algebra we obtain the eigen-

value problem [10] 
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(4) 

 

The Eq. (4) constitutes a homogeneous system of GN linear equations with the unknown eigen-

vectors )(a g,m   which have GN components that correspond to the GN eigenvalues  . Due to 

the symmetry of the Gauss-Legendre quadrature sets with even N, the eigenvalues   will appear 

in pairs [7,8]. For fixed-source problems, which are the topic of the present work, these GN eigen-

values are real numbers [7,8]. This problem can be written in a matrix compact notation as 
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1
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(5) 

 

where A is a GN x GN real square matrix.  The particular solution 
p
g , with isotropic fixed-source 

gjQ , takes the form 
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Where   is the Kronecker delta. The particular solution 
p
g  for the case analyzed in this paper, do 

not depends on the direction of the discrete ordinate m , because the source gjQ  is considered iso-

tropic. Hence, the general solution of the SN equations (1) for G energy groups in j  represented by 

the Eq. (2), can be written in the following form: 
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where   are constants to be determined and p

g  is the particular solution obtained from Eq. (6). 

 

3. THE MULTIGROUP SPECTRAL DETERMINISTIC METHOD (SDM)  
 

This section consists of two parts. In the first part, we define the Spectral Deterministic Method 

(SDM) algorithm [10]; then in the second part, we describe the iterative process for solving the neu-

tron transport equation spatially discretized in the multigroup formulation, using the SDM. 

Let us analyze the uniform grid   represented in Figure 1. We consider Eq. (1) defined in cell 

j  and prescribed boundary conditions written formally as 
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After making the spectral analysis of Eq. (1), for each spatial cell j , as shown in the previous 

Section 2, we obtain the values of the eigenvectors )(a g,m   and the eigenvalues   . Then, the 

parameters   and the outgoing angular fluxes at each cell are calculated using Eq. (7). The pre-

established boundary conditions, represented by Eq. (8), are used as the initial estimates of the in-

coming angular fluxes in the cell-edge to determine, the angular fluxes leaving the cell in all direc-

tions using Eq. (7). Reached this point, it becomes necessary to define our transport iteration, to 

understand the dynamics of calculating the emerging angular fluxes in the SDM iterative scheme. It 

is important to point out that our iterative process is substantially different to the transport sweeps 

used by the DD [1], that uses the Source Iteration (SI) scheme [1] and SGF [7,8], that use the one-

node block inversion (NBI) scheme [7,8]. 

The transport iteration of the SDM, starts with the boundary conditions on the left side of the 

first cell (x = 0 cm and j = 1) as the first incoming angular fluxes, going to the right side until the 

end of the spatial domain (x = H cm and j = J) is reached.  Using the Eq. (7) to calculate all the out-
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going angular fluxes in each cell. When we arrive at the right side, we check whether the prescribed 

stopping criterion is satisfied. If it is satisfied, terminate the iteration, if not return to the first cell 

(x=0). This iterative process is performed until the maximum norm for the relative deviation be-

tween two consecutive estimates of the group scalar flux in the cell-edge, is smaller than a pre-

established value. This relative deviation is calculated using the equation 
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In Eq. (9), the value   is the accuracy parameter of the iterative process and 
k

g (x)  as the k'th esti-

mate of the multigroup cell edge scalar flux and, which can be calculated using 
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4. NUMERICAL RESULTS AND DISCUSSION 
 

In this section, we examine a typical model-problem developed to test the spectral nodal meth-

odology SDM with linearly anisotropic scattering and a prescribed interior source equal to zero.  

The model-problem considers a heterogeneous multilayer slab composed by four regions and four 

material zones, each one with thickness of 5 cm for a total length of H = 20 cm as shown in Figure 

2. Here we use G = 5. To calculate the group total macroscopic cross sections and the scattering 

cross sections we use the fictitious cross-section set, defined by García R. D. M and Siewert C. E. in 

[11,12] and Menezes [13]. Here we must emphasize that the numerical results presented by the ref-

erence work [13] refer to the DD method (fine mesh) and the nodal method SGF (coarse-mesh), 

therefore, we compare the numerical results of the SDM (coarse-mesh) with those presented by 

these methods.  The model-problem presents Qg =0, however, this methodology can be successfully 

applied to problems with non-zero fixed-source Qg. 
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k is the isotropic degree for the analyzed problem and   is Kronecker delta. The zeroth and first-

order components of the macroscopic differential scattering cross section are shown in Table 1. 

 

Figure 2: Model-Problem 

 

Source: Author 

 

In this model-problem, we change the order of the Gauss-Legendre quadrature set of the ana-

lyzed methods to verify the accuracy of the SDM when compared with the traditional fine-mesh DD 

method and the coarse-mesh SGF method.  The prescribed stopping criterion applied to the methods 

requires that the discrete maximum norm of the relative deviation between two iterations (scalar 

fluxes) be less than or equal to 610 . 
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Table 1: Macroscopic differential scattering cross section (G = 5) 
g g

S0j

 (cm
-1

) 
g g

S1j

 (cm
-1

) 

g g 

Zone g  1 2 3 4 5 1 2 3 4 5 

 

 

1 

1 0.01 0 0 0 0 0.0069 0 0 0 0 

2 0.005 0.02 0 0 0 0.0034 0.0136 0 0 0 

3 0.0033 0.01 0.03 0 0 0.0023 0.0068 0.0201 0 0 

4 0.0025 0.0067 0.015 0.04 0 0.0017 0.0045 0.0099 0.0264 0 

5 0.002 0.005 0.01 0.02 0.05 0.0013 0.0033 0.0066 0.0131 0.0325 

 

 

2 

1 0.1048 0 0 0 0 0.0072 0 0 0 0 

2 0.0052 0.0210 0 0 0 0.0036 0.0142 0 0 0 

3 0.0035 0.0105 0.0314 0 0 0.0024 0.0071 0.0211 0 0 

4 0.0026 0.0070 0.0157 0.0419 0 0.0017 0.0047 0.0105 0.0277 0 

5 0.0021 0.0052 0.0105 0.0209 0.0524 0.0014 0.0035 0.0069 0.0137 0.0340 

 

 

3 

1 0.0110 0 0 0 0 0.0076 0 0 0 0 

2 0.0055 0.0219 0 0 0 0.0038 0.0149 0 0 0 

3 0.0037 0.0110 0.0329 0 0 0.0025 0.0074 0.0220 0 0 

4 0.0027 0.0073 0.0164 0.0438 0 0.0018 0.0049 0.0109 0.0290 0 

5 0.0022 0.0055 0.0109 0.0219 0.0548 0.0015 0.0036 0.0072 0.0143 0.03560 

 

 

4 

1 0.0114 0 0 0 0 0.0079 0 0 0 0 

2 0.0057 0.0229 0 0 0 0.0039 0.0155 0 0 0 

3 0.0038 0.0114 0.0343 0 0 0.0026 0.0077 0.0230 0 0 

4 0.0029 0.0076 0.0171 0.0457 0 0.0019 0.0051 0.0114 0.0301 0 

5 0.0023 0.0057 0.0114 0.0229 0.0571 0.0015 0.0038 0.0075 0.0150 0.0371 

 

In Table 2, we display the scalar fluxes for groups g = 1 to 5 of the SDM as well as the results 

generated by the DD and SGF methods, considering quadrature set order N = 4. 
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Table 2: Scalar fluxes
1
 with N = 4 

Numerical 

Method 

  DD
 a 

 SGF
 b

  SDM
 c
  

Quadrature 

Order 

(N) 

x 

(cm) 

group 

(g) 

 TIN
 d

  TIN  TIN 

 

 

 

 

 

 

 

 

4 

 

 

0 

 

1    5.05806E-01
 e
  

 

 

 

 

 

 

 

10 

5.05806E-01  

 

 

 

 

 

 

 

4 

5.05806E-01  

 

 

 

 

 

 

 

5 

2 2.06993E-03 2.06992E-03 2.06992E-03 

3 1.10313E-03 1.10313E-03 1.10313E-03 

4 7.00551E-04 7.00550E-04 7.00550E-04 

5 6.86960E-04 6.86958E-04 6.86958E-04 

 

 

 

10 

    

1 6.77523E-02 6.77568E-02 6.77568E-02 

2 2.28494E-03 2.28500E-03 2.28500E-03 

3 9.90018E-04 9.90056E-04 9.90056E-04 

4 5.49134E-04 5.49162E-04 5.49162E-04 

5 5.69656E-04 5.69681E-04 5.69680E-04 

     

 

 

20 

1 7.44242E-03 7.44317E-03 7.44317E-03 

2 1.89562E-04 1.89586E-04 1.89586E-04 

3 6.97606E-05 6.97696E-05 6.97696E-05 

4 3.68335E-05 3.68379E-05 3.68379E-05 

5 3.70269E-05 3.70317E-05 3.70317E-05 

1
 Unit: neutrons x cm

-2
 x s

-1 

a
 DD method with 100 nodes per region (fine-mesh) 

b
 SGF method with 1 node per region (coarse-mesh) 

c
 SDM method with 1 node per region (coarse-mesh) 

d
 Total Iterations Number 

e 
Read: 5.05806 x 10

-1 

 

In Figures 3 and Figure 4 we present the numerical results in Tables 2 in graphic format to scalar 

fluxes based in model-problem (Figure 1) 
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Figure 3: Scalar flux group g = 1 with N = 4 

 

Source: Author 

 

Figure 4: Scalar fluxes from group g = 2: 5 with N = 4 

 

Source: Author 

 

In Table 3 [14], we display the scalar fluxes for groups g = 1 to 5 of the SDM as well as the re-

sults generated by the DD and SGF methods, considering quadrature set order N = 8. 
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Table 3: Scalar fluxes
1
 with N = 8 

Numerical 

Method 

  DD
 a 

 SGF
 b

  SDM
 c
  

Quadrature 

Order 

 (N) 

x 

(cm) 

group 

(g) 

 TIN
 d

  TIN  TIN 

 

 

 

 

 

 

 

 

8 

 

 

0 

 

1  5.06252E-01
 e
  

 

 

 

 

 

 

 

10 

5.06252E-01  

 

 

 

 

 

 

 

4 

5.06252E-01  

 

 

 

 

 

 

 

5 

2 2.12772E-03 2.12771E-03 2.12771E-03 

3 1.11960E-03 1.11960E-03 1.11960E-03 

4 7.08034E-04 7.08034E-04 7.08034E-04 

5 6.89088E-04 6.89087E-04 6.89087E-04 

    

 

 

10 

1 7.00116E-02 7.00148E-02 7.00148E-02 

2 2.29617E-03 2.29618E-03 2.29618E-03 

3 1.00156E-03 1.00158E-03 1.00158E-03 

4 5.57185E-04 5.57207E-04 5.57207E-04 

5 5.76209E-04 5.76227E-04 5.76227E-04 

    

 

 

20 

1 7.42169E-03 7.42255E-03 7.42255E-03 

2 1.88101E-04 1.88126E-04 1.88126E-04 

3 6.88787E-05 6.88883E-05 6.88883E-05 

4 3.62472E-05 3.62520E-05 3.62520E-05 

5 3.65260E-05 3.65311E-05 3.65311E-05 

1
 Unit: neutrons x cm

-2
 x s

-1 

a
 DD method with 100 nodes per region (fine-mesh) 

b
 SGF method with 1 node per region (coarse-mesh) 

c
 SDM method with 1 node per region (coarse-mesh) 

d
 Total Iterations Number 

e 
Read: 5.06252x 10

-1 
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In Figure5 and Figure 6 we present the numerical results in Table3 in graphic format to scalar 

fluxes based in model-problem (Figure 1). 

 

Figure 5: Scalar flux group g = 1 with N = 8 

 

Source: Author 

 

Figure 6: Scalar fluxes from group g = 2: 5 with N = 8 

 

Source: Author 
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As shown in Table 2, Table 3, Figure 3, Figure 4, Figure 5 and Figure 6, we can indicate that the 

SDM method presents the same scalar fluxes results for the different sets of Gauss-Legendre 

squares S4 and S8, when compared to the traditional DD methods (fine-mesh) and SGF (coarse 

mesh).  In the graphs of Figure 4 and Figure 6, only a curve appears for the values of the scalar 

fluxes in the energy groups 4 and 5. This fact occurs because the values of the scalar fluxes of the 

energy groups are very close. 

The SDM method is well suited for the numerical solution of the neutron transport equation, val-

idating its precision for this model-problem.  It should be emphasized here that this investigation, 

using the SDM method and the comparison of its results with the DD (fine-mesh) and SGF (coarse-

mesh) methods, initially served to confirm the consistency and accuracy of this methodology ap-

plied in neutron shielding problems (fixed-source). In the future, other more sophisticated model-

problems should be tested to verify the computational efficiency, from the point of view of CPU 

times of the simulation of the modeled problems. 

 

5. CONCLUSIONS 

 

In this paper, the analytical coarse-mesh numerical method (SDM) for multigroup fixed-source 

linearly anisotropic SN problems in slab geometry has been described and developed. It has been 

tested for heterogeneous geometry to validate its accuracy. The SDM method developed is based on 

the local analytical general solution within each region of the domain which is determined by the 

spectral analysis described in Section 2. The SDM method converges to numerical solutions that are 

free from spatial truncation errors because their results coincide with the numerical results obtained 

from the analytical solution of the analyzed SN problem regardless of the definition of the spatial 

grid or the angular quadrature used. The SDM algorithm is very simple when compared with the 

DD and SGF methods, which justifies its implementation.   

The development and implementation of the SDM method require a smaller algebraic and com-

putational effort when compared with DD and SGF methods justifying the investment in obtaining 

its equations and solution through a numerical (iterative) scheme. For all simulations run for this 

paper, CPU times did not exceed one second, so we decided to omit it in this work. In this paper, we 
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are initially interested in testing the accuracy and consistency of the SDM when compared to tradi-

tional methods that are found in the scientific literature. Our expectation for future works is to ex-

tend the SDM method to multidimensional problems, considering higher anisotropic degree and 

several energy groups.  
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