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ABSTRACT 

 

Presented here is an extension of the spectral Green’s function-constant nodal (SGF-CN) method for 

the numerical solution of energy multigroup, fixed-source, discrete ordinates (SN) problems in X, Y-

geometry with arbitrary L’th-order of scattering anisotropy, provided L<N. This analytical coarse-

mesh method uses the multigroup SGF method for numerically solving the one-dimensional 

transverse-integrated SN nodal equations with constant approximations for the transverse leakage 

terms. The only approximations in the present version of the SGF-CN method occur in these 

transverse leakage terms, as the energy-group transfer scattering source terms are treated analytically 

within the offered method. Numerical results to typical model problems are given to illustrate the 

method’s accuracy and to analyze the efficiency of the offered SGF-CN computer code for neutral 

particle transport calculations.   

Keywords: energy multigroup, fixed source, discrete ordinates, anisotropic scattering. 
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 INTRODUCTION 1.

 

A considerable number of phenomena involving neutral particle transport in multiplying and in 

non-multiplying media can be understood within the deterministic framework of energy multigroup 

discrete ordinates (SN) models. In the SN formulations of particle transport equations in various 

geometries, the direction-of-motion variables are discretized into a set of distinct numerical values, 

and angular quadratures are used to approximate the integrals in all angular directions [1]. 

In addition, one conventionally considers an approximation of the energy-dependent SN 

problems, wherein the energy variable is also discretized. Discretization of the energy variable is 

commonly performed by integrating over G energy groups, leading to the conventional multigroup 

SN model, in which the particle energy range is divided into G contiguous energy groups. As with 

the discretization of the spatial variables, questions regarding efficiency of computer codes have 

motivated the development of coarse-mesh numerical methods for multigroup SN problems. By 

computational efficiency we mean reduced computer running time for fixed accuracy requirements. 

Among all the currently-known coarse-mesh methods applied to multigroup multidimensional SN 

problems, nodal methods are widely regarded as the most accurate [2, 3, 4]. 

In this paper we describe the multigroup spectral Green’s function-constant nodal (SGF-CN) 

method to numerically solve 𝑋, 𝑌-geometry SN problems in the energy multigroup formulation in 

non-multiplying media. The only approximations occur in the group leakage terms of the SN 

transverse-integrated nodal equations, which are approximated by constants. The SGF-CN method 

for isotropic scattering carefully analyzed for slab geometry in BARROS and LARSEN [5] and for 

𝑋, 𝑌-geometry in MENEZES et al. [6]. Here, in the context of 𝑋, 𝑌-geometry, we extend the 

generality of the SGF-CN method by allowing for anisotropic scattering, whereby particles have 

distinct probabilities of directions of motion after collisions, useful in nuclear technique 

applications, e.g., Boron Neutron Capture Therapy (BNCT). 

An outline of the remainder of this paper follows. In the next section, we describe a spectral 

analysis [6-8] that we perform in the multigroup transverse-integrated SN nodal equations to 
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determine the analytic local homogeneous solution within each discretization node of the spatial 

grid set up on the rectangular domain. In section 3, we present the offered multigroup SGF-CN 

method as described in MENEZES et al. [6,9]. Numerical results are given in section 4, and section 

5 gives a number of concluding remarks and suggestions for future work. 

 GENERAL SOLUTION OF THE TRANSVERSE-INTEGRATED SN 2.

NODAL EQUATIONS  

 

We begin by considering a spatial grid on a rectangular domain Γ of width 𝑋 and height 𝑌, 

where each discretization cell is termed node Γ𝑖𝑗 of width h𝑥𝑖
 and height h𝑦𝑗

 (𝑖 = 1: 𝐼, 𝑗 = 1: 𝐽). 

Now, on this node, we consider the multigroup 𝑋, 𝑌-geometry SN equations with a uniform isotropic 

group interior source Q𝑔 and anisotropic scattering  

 

 
[𝜇𝑚

∂

∂𝑥
+ 𝜂𝑚

∂

∂𝑦
+ 𝜎𝑇𝑔

] 𝜓𝑚,𝑔(𝑥, 𝑦)

= ∑ ∑
2𝑙 + 1

4
𝜎𝑆𝑙

𝑔′→𝑔
{𝑃𝑙(𝜇𝑚)𝜙𝑔′,𝑙(𝑥, 𝑦)

𝐿

𝑙=0

𝐺

𝑔′=1

+ 2 ∑
(𝑙 − 𝑘)!

(𝑙 + 𝑘)!
𝑃𝑙

𝑘(𝜇𝑚)𝜙𝑔′,𝑙
𝑘 (𝑥, 𝑦) cos(𝑘𝜑𝑚) sin𝑘(𝜃𝑚)

𝑙

𝑘=1

} +𝑄𝑔. 

 

 

 

(1) 

 

The notation is standard [1,10]: 𝜓𝑚,𝑔 is the group angular flux; 𝜎𝑇𝑔
  is the group total macroscopic 

cross section; 𝜎𝑆𝑙

𝑔′→𝑔
 is the 𝑙’th Legendre moment of the differential scattering macroscopic cross 

section from energy group 𝑔′ to energy group 𝑔;  (𝜇𝑚, 𝜂𝑚) are the discrete angular directions; 

𝑃𝑙(𝜇𝑚) is the 𝑙’th Legendre polynomial; 𝑃𝑙
𝑘(𝜇𝑚) is the 𝑙’th, 𝑘’th associated Legendre polynomial, 

𝜑𝑚 is the discrete azimuthal angle and 𝜃𝑚 is the discrete polar angle in the 𝑚’th direction, for 

𝑚 = 1: 𝑀, where 𝑀 = 𝑁(𝑁 + 2) 2⁄   for the SN model; 𝑔 = 1: 𝐺, where 𝐺 is the total number of 

groups; and 𝑙 = 0: L, where 𝐿 (𝐿 < 𝑁) indicates that the Legendre expansion of the differential 

scattering macroscopic cross section is truncated after (𝐿 + 1) terms. Moreover, we defined the 𝑙’th 
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Legendre angular moment of the angular flux, 𝜙𝑔,𝑙(𝑥, 𝑦), and the 𝑙’th, 𝑘’th associated Legendre 

angular  moment of the angular flux, 𝜙𝑔,𝑙
𝑘 (𝑥, 𝑦), for group 𝑔 as: 

 
𝜙𝑔,𝑙(𝑥, 𝑦) = ∑ 𝑃𝑙(𝜇𝑛)𝜓𝑛,𝑔(𝑥, 𝑦)𝜔𝑛

𝑀

𝑛=1
, 

(2) 

and 

 
𝜙g,𝑙

𝑘 (𝑥, 𝑦)  = ∑ 𝑃𝑙
𝑘(𝜇

𝑚
)𝜓𝑛,𝑔(𝑥, 𝑦)𝜔𝑛cos (𝑘𝜑

𝑚
)sin𝑘 (𝜃𝑚)

𝑀

𝑛=1
, 

(3) 

where 𝜔𝑛 is the angular quadrature weight, 𝑚 = 1: 𝑀.  

Tranverse-integrating Eq.(1) separately over the 𝑥 and the 𝑦 coordinate directions within node  

Γ𝑖𝑗 and defining the tranverse average angular fluxes of particles migrating in direction (𝜇𝑚, 𝜂𝑚) in 

the 𝑔’th energy group 

 
�̃�𝑚,𝑔(𝑥) =

1

ℎ𝑦𝑗

∫ 𝜓𝑚,𝑔

𝑦𝑗−1/2

𝑦𝑗−1/2

(𝑥, 𝑦)𝑑𝑦, 
(4) 

and 

 
�̂�𝑚,𝑔(𝑦) =

1

ℎ𝑥𝑖

∫ 𝜓𝑚,𝑔(𝑥, 𝑦)
𝑥𝑖−1/2

𝑥𝑖−1/2

𝑑𝑥, 
(5) 

 

and approximating the group transverse leakage terms by their node-edge transverse  averages 

 𝜂𝑚

ℎ𝑦𝑗

[𝜓𝑚,𝑔(𝑥, 𝑦
𝑗+

1
2
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𝑗−
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2
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1
2

] ≡ �̂�𝑚,𝑔, (6) 

and 

 𝜇𝑚

ℎ𝑥𝑖

[𝜓𝑚,𝑔(𝑥
𝑖+

1
2

, 𝑦) − 𝜓𝑚,𝑔(𝑥
𝑖−

1
2

, 𝑦)] ≅
𝜇𝑚

ℎ𝑥𝑖

[�̃�
𝑚,𝑔,𝑖+

1
2

− �̃�
𝑚,𝑔,𝑖−

1
2

] ≡ �̃�𝑚,𝑔, 
(7) 

we obtain the transverse-integrated SN nodal equations, which we write in the general form 

Λ𝑚

𝑑

𝑑𝑢
ϝ𝑚,𝑔(𝑢) + 𝜎𝑇𝑔

ϝ𝑚,𝑔(𝑢) = ∑ ∑ 𝑆𝑚,𝑔
𝑛,𝑔′

ϝ𝑛,𝑔′(𝑢)

𝑀

𝑛=1

𝐺

𝑔′=1
+ 𝑄𝑔 − 𝜏𝑚,𝑔, 

 

(8) 

 

where we have defined: Λ𝑚=𝜇𝑚 (or 𝜂𝑚);  𝑢 = 𝑥 (or 𝑦 ); ϝ𝑚,𝑔(𝑢) = �̃�𝑚,𝑔(𝑥) (or �̂�𝑚,𝑔(𝑦)); 𝜏𝑚,𝑔 =

�̂�𝑚,𝑔 (or �̃�𝑚,𝑔). We remark that the subscript 𝑖, 𝑗 is dropped to simplify notation. However, we 

should bear in mind that (𝑥, 𝑦)  ∈  Γ𝑖𝑗. Furthermore, we define 
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𝑆𝑚,𝑔
𝑛,𝑔′

= ∑
2𝑙 + 1

4
𝜎𝑆𝑙

𝑔′→𝑔
𝐿

𝑙=0
∑

2

(1 + 𝛿0𝑘)

(𝑙 − 𝑘)!

(𝑙 + 𝑘)!
𝐶𝑙,𝑚

𝑘 𝐶𝑙,𝑛
𝑘 𝜔𝑛

𝑙

𝑘=0
, 

(9) 

where 

𝐶𝑙,𝑚
𝑘 =

𝑑𝑘

𝑑𝜇𝑘
𝑃𝑙(𝜇)|𝜇=𝜇𝑚

∑
𝑘!

𝑛! (𝑘 − 𝑛)!
𝜂𝑚

𝑛 (1 − 𝜇𝑚
2 − 𝜂𝑚

2 )
𝑘−𝑛

2 cos (
𝑘 − 𝑛

2
𝜋)

𝑘

𝑛=0
, 

(10) 

with  𝛿𝑚𝑛 denoting the Kronecker delta and 𝑛! denoting the factorial of a positive integer 𝑛. 

At this point we solve Eq.(8) in each spatial node Γ𝑖𝑗 analytically; therefore we write the 

expression for  the local general solution as 

ϝ𝑚,𝑔(𝑢) = ϝ𝑚,𝑔
ℎ (𝑢) + ϝ𝑚,𝑔

𝑝
. (11) 

Here the superscript ℎ denotes the homogeneous solution component and the superscript 𝑝 denotes 

the particular solution component of the local general solution. 

To obtain the homogeneous solution component ϝ𝑚,𝑔
ℎ (𝑢), we perform a spectral analysis of 

Eq.(8) with 𝑄𝑔 = 0 and 𝜏𝑚,𝑔 = 0 and consider the expression 

ϝ𝑚,𝑔,𝜈
ℎ (𝑢) = 𝑎𝑘(𝜈) exp (−

𝑢 − 𝜆ℓ

𝜈
) , 𝜆ℓ = {

𝑢
ℓ+

1
2

   𝜈 < 0

𝑢
ℓ−

1
2

   𝜈 > 0
,

ℓ = 𝑖(or 𝑗), 𝑘 = 𝑚 + (𝑔 − 1)𝑀.

 

 

 

(12) 

 

By substituting  Eq.(12) into the homogeneous equation corresponding to  Eq.(8), we write the 

result in matrix form as the eigenvalue problem 

T𝑢a𝑢(𝜈) =
1

𝜈
a𝑢(𝜈). 

(13) 

 

Here the square matrix T𝑢 of order 𝑀𝐺 has entries defined by 

𝑡𝑗𝑘
𝑢 ≡

1

Λ𝑚
{𝛿𝑔,𝑔′𝛿𝑚,𝑛𝜎𝑇𝑔

− 𝑆𝑚,𝑔
𝑛,𝑔′

},

𝑗 = 𝑚 + (𝑔 − 1)𝑀, 𝑚 = 1: 𝑀, 𝑔 = 1: 𝐺 and

𝑘 = 𝑛 + (𝑔′ − 1)𝑀, 𝑛 = 1: 𝑀, 𝑔′ = 1: 𝐺,

 

 

(14) 
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where 𝛿𝑚,𝑛 (𝛿𝑔,𝑔′) is the Kronecker delta. Matrix 𝑇𝑢 is a real square matrix, whose eigenvalues 𝑣𝑙
𝑢 

appear in ± pairs and the corresponding eigenvectors are 

a𝑢(𝜈𝑙) ≡ [𝑎1(𝜈𝑙)𝑎2(𝜈𝑙) … 𝑎𝑘(𝜈𝑙) … 𝑎𝑀𝐺(𝜈𝑙)]𝑇 ,
𝑘 = 𝑚 + (𝑔 − 1)𝑀, 𝑚 = 1: 𝑀, 𝑔 = 1: 𝐺, 𝑙 = 1: 𝑀𝐺,

 
(15) 

  

meaning that we have ordered the equations by varying  𝑚 = 1: 𝑀 for each value of 𝑔, 𝑔 = 1: 𝐺, to 

write the eigenvalue problem given in Eq.(13). By solving the eigenvalue problem (13) the 

homogeneous component of the local general solution appears as 

ϝ𝑚,𝑔
ℎ (𝑢) = ∑ 𝐶𝑙𝑎𝑘(𝜈𝑙)exp (−

𝑢 − 𝜆ℓ

𝜈𝑙
)

𝑀𝐺

𝑙=1
, 𝑘 = 𝑚 + (𝑔 − 1)𝑀, 

(16) 

  

where 𝐶𝑙 , 𝑙 = 1: 𝑀G, are arbitrary constants and 𝑢 = 𝑥 (or 𝑦) ∈  Γ𝑖𝑗. Furthermore, spatially constant 

particular solution of Eq.(8) exists in Γ𝑖𝑗 due to uniform group node-interior sources and the 

constant transverse leakage approximation. Therefore, the particular solution is given by the 

solution of the linear system 

Aϝ𝑝 =  Q, (17) 

where the entries of matrix  A are given by 

a𝑗𝑘 = 𝛿𝑔𝑔′𝛿𝑚𝑛𝜎𝑇𝑔
− 𝑆𝑚,𝑔

𝑛,𝑔′

,

𝑗 = 𝑚 + (𝑔 − 1)𝑀, 𝑚 = 1: 𝑀, 𝑔 = 1: 𝐺,

𝑘 = 𝑛 + (𝑔′ − 1)𝑀, 𝑛 = 1: 𝑀, 𝑔′ = 1: 𝐺,

 

 

(18) 

 

and the transpose of the 𝑀G-dimensional column matrix Q is defined by 

Q ≡ [𝑄1 − 𝜏11 ⋯ 𝑄1 − 𝜏𝑀1 ⋯ 𝑄𝐺 − 𝜏1𝐺 ⋯ 𝑄𝐺 − 𝜏𝑀𝐺]𝑇. (19) 

 

Now we substitute Eq.(16) and the solution of Eq.(17) into Eq.(11) to obtain the closed form of the 

local general solution inside node ∈  Γ𝑖𝑗  for 𝑢 = 𝑥 or 𝑦. 
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        In the next section we describe a numerical method that preserves these local analytical general 

solutions for the 𝑥 and 𝑦 coordinate directions and uses continuity and boundary conditions to 

generate numerical solutions to energy multigroup SN problems in rectangular systems whose 

spatial grid is composed of many discretization nodes. 

 THE MULTIGROUP SGF-CN METHOD 3.

 

        As we have mentioned, in the present multigroup SGF-CN method, the only approximations 

occur in the group transverse leakage terms. That is, the one-dimensional multigroup transverse-

integrated SN nodal equations (8) for 𝑢 = 𝑥 or 𝑦 are solved analytically with constant transverse 

leakage approximations.  

        Therefore, we consider a spatial grid and integrate Eq.(1) within Γ𝑖𝑗. The result are the classic 

multigroup spatially discretized SN balance equations 

 

𝜇𝑚

ℎ𝑥𝑖

(�̃�
𝑚,𝑔,𝑖+

1
2

− �̃�
𝑚,𝑔,𝑖−

1
2

) +
𝜂𝑚

ℎ𝑦𝑗

(�̂�
𝑚,𝑔,𝑗+

1
2

− �̂�
𝑚,𝑔,𝑗−

1
2

) +

𝜎𝑇𝑔
𝜓

𝑚,𝑔
= ∑ ∑ 𝑆𝑚,𝑔

𝑛,𝑔′

𝜓
𝑛,𝑔′

𝑀

𝑛=1

𝐺

𝑔′=1
+ 𝑄𝑔, 𝑔 = 1: 𝐺, 𝑚 = 1: 𝑀.

 

 

(20) 

 

Here we have defined the group node-average angular flux  (�̅�𝑚,𝑔) which, for 𝑢 = 𝑥 in Eq.(8), is 

related to the multigroup  node-edge average angular fluxes in the incoming directions and to the 

multigroup node-interior source and transverse leakages as 

𝜓
𝑚,𝑔

= ∑ ∑ 𝜒𝑛,𝑔′→𝑚,𝑔�̃�
𝑛,𝑔′,𝑖−

1
2

𝐺

𝑔′=1
𝜇𝑛>0

+ ∑ ∑ 𝜒𝑛,𝑔′→𝑚,𝑔�̃�
𝑛,𝑔′,𝑖+

1
2

𝐺

𝑔′=1
𝜇𝑛<0

+

�̂�𝑚,𝑔(𝑄1, 𝑄2, ⋯ , 𝑄𝐺), 𝑚 = 1: 𝑀, 𝑔 = 1: 𝐺.

 

 

(21) 

 

Equation (21) is referred to as the multigroup SGF-CN auxiliary equations, where 𝜒𝑛,𝑔′→𝑚,𝑔 and 

�̂�𝑚,𝑔(𝑄1, 𝑄2, ⋯ , 𝑄𝐺) are determined by requiring that the local general solution of Eq.(8) with 

𝑢 = 𝑥 have group node-average and node-edge average angular fluxes that for all values of 𝐶𝑙 

satisfy Eq.(21). Therefore, we first evaluate the group node-average and node-edge average angular 



 Menezes et al.  ● Braz. J. Rad. Sci. ● 2020 8 

 

fluxes that correspond to the local general solutions given by combining Eq.(16), with 𝑢 = 𝑥, and 

the solution of Eq.(17); then we use these in Eq.(21) by requiring that the result hold for all choices 

of 𝐶𝑙. As a result, we find 

�̂�𝑚,𝑔(𝑄1, 𝑄2, ⋯ , 𝑄𝐺) = �̃�𝑚,𝑔
𝑝 − ∑ ∑ 𝜒𝑛,𝑔′→𝑚,𝑔�̃�

𝑛,𝑔′
𝑝𝐺

𝑔′=1
𝑀
𝑛=1 . (22) 

Moreover, the constants 𝜒𝑛,𝑔′→𝑚,𝑔 must satisfy  

𝑎𝑚,𝑔
𝑥 (𝜈ℓ)

ℒℓ
𝑥 {exp (ℒℓ

𝑥) − 1} = exp (ℒℓ
𝑥) ∑ ∑ 𝜒𝑛,𝑔′→𝑚,𝑔𝑎𝑛,𝑔′

𝑥 (𝜈ℓ)
𝐺

𝑔′=1
𝜇𝑛>0

+

∑ ∑ 𝜒𝑛,𝑔′→𝑚,𝑔𝑎𝑛,𝑔′
𝑥 (𝜈ℓ)

𝐺

𝑔′=1
𝜇𝑛<0

, 𝜈ℓ > 0,

 

 

(23) 

and 

𝑎𝑚,𝑔
𝑥 (𝜈ℓ)

ℒℓ
𝑥 {exp (ℒℓ

𝑥) − 1} = ∑ ∑ 𝜒𝑛,𝑔′→𝑚,𝑔𝑎𝑛,𝑔′
𝑥 (𝜈ℓ)

𝐺

𝑔′=1
𝜇𝑛>0

+

exp (ℒℓ
𝑥) ∑ ∑ 𝜒𝑛,𝑔′→𝑚,𝑔𝑎𝑛,𝑔′

𝑥 (𝜈ℓ)
𝐺

𝑔′=1
𝜇𝑛<0

, 𝜈ℓ < 0,

 

 

(24) 

 

where we have defined  ℒℓ
𝑥 = ℎ𝑥𝑖

|𝜈ℓ|⁄ .  

        At this point we note that Eqs.(23-24) form a system of 𝑀2𝐺2 linear algebraic equations for 

the 𝑀2𝐺2  unknowns 𝜒𝑛,𝑔′→𝑚,𝑔. By solving this system for 𝜒𝑛,𝑔′→𝑚,𝑔, Eq.(21)  constitutes the 

auxiliary equations which, with the conventional multigroup SN balance equations (20), are exactly 

satisfied by the general solution of the one-dimensional transverse-integrated SN nodal equation (8) 

with 𝑢 = 𝑥. A similar auxiliary equation holds for Eq.(8) with 𝑢 = 𝑦 and appears as 

𝜓
𝑚,𝑔

= ∑ ∑ 𝜃𝑛,𝑔′→𝑚,𝑔�̂�
𝑛,𝑔′,𝑗−

1
2

𝐺

𝑔′=1
+ ∑ ∑ 𝜃𝑛,𝑔′→𝑚,𝑔�̂�

𝑛,𝑔′,𝑗+
1
2

+
𝐺

𝑔′=1
𝜂𝑛<0𝜂𝑛>0

�̃�𝑚,𝑔(𝑄1, 𝑄2, ⋯ , 𝑄𝐺), 𝑚 = 1: 𝑀, 𝑔 = 1: 𝐺.

 

 

(25) 

 

        In conclusion, the multigroup spatially discretized SN balance equation (20) together with 

auxiliary equations (21) and (25) and appropriate continuity and boundary conditions form the 
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multigroup SGF-CN equations. The SGF-CN equations are then solved iteratively by performing 

“node-block inversions” described in references [6-9]. This iterative scheme uses the most recent 

estimates for the incoming multigroup node-edge average angular fluxes for each node to 

completely solve the SN problem in that node and obtain estimates for the outgoing multigroup 

node-edge average angular fluxes that are used as incoming fluxes for the adjacent discretization 

nodes of the spatial grid in the directions of the transport sweeps. 

        In the next section we consider  two model problems to illustrate the accuracy of the present 

multigroup SGF-CN method for deep penetration problems. 

 RESULTS AND DISCUSSION 4.

 

        At this point we present numerical results to two fixed-source model problems using level 

symmetric (LQN) angular quadrature sets [1,10] and stopping criteria requiring that the discrete 

maximum norms of the relative deviations between two consecutive estimates of the multigroup 

node-edge average scalar fluxes be no greater than a prescribed positive number 𝜖. In order to 

compare the solutions obtained by the offered method with reference values, we use the percentage 

relative deviations that we estimate as 𝜀 = (
𝑉𝑟−𝑉

𝑉𝑟
) × 100, where 𝑉𝑟 is the reference quantity and 𝑉 

is the quantity generated by the SGF-CN method. Moreover, the conventional linear nodal method 

(LN) with the source iteration (SI) scheme [1,4] was also programed for a consistent comparison.  

 

4.1. Forward-scattering 2-D shield problem 

 

The problem considered here, proposed in Benchmark Problem Committee [12], simulates a 

realistic shielding structure. This two-energy group test problem consists of a uniform isotropic 

neutron source stored in a highly absorbing shielding material. The geometry is a homogeneous 

system (133 cm × 140 cm). The source emits neutrons whose energy range has been divided into 

two energy groups, i.e., 𝑄1 = 0.006546 and 𝑄2 = 0.017701 neutrons/cm
3
sec. The macroscopic 

cross sections for the homogeneous domain are given in reference [12]. Results in this isotropic 

scattering problem can be found in [6, 12]. Adding the forward scattering cross sections 𝜎𝑆𝑙

1→1 =
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0.008976, 𝜎𝑆𝑙

2→2 = 0.003914 and 𝜎𝑆𝑙

1→2 = 0.009016 for all 𝑙 [12], this isotropic scattering problem 

can be transformed into “equivalent” anisotropic scattering problem as discussed in ROY [13]. The 

converted macroscopic cross sections for the homogeneous domain are given in Table 1. The 

numerical experiment is the estimate of neutron leakage �̃�𝑔
𝑇 =

1

4
∑ ∑ (𝜇𝑛𝜓

~

𝑛,𝑔,𝐼+1/2,𝑗ℎ𝑦𝑗
𝜔𝑛)𝜇𝑛>0

𝐽
𝑗=1 ,

𝑔 = 1: 2 through the whole physical boundary on the right-hand side of the structure, i.e., 

{(𝑥, 𝑦)| 𝑥 = 133  𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 144 }.We solved this problem using the present multigroup SGF-

CN method with the NBI iteration scheme, level symmetric S12 and S20 angular quadrature sets 

[1,10] and the stopping criterion with 𝜖 = 10−6. Moreover, we considered the 𝑃𝑛  (𝑛 = 1, 3, ⋯ ,11) 

truncated expansions of the anisotropic scattering.  In this way the well-validated isotropic 

scattering version of the code SGF-CN [6] is used to validate the anisotropic version. 

Table 2 displays the percentage relative deviations of the results generated for  �̃�𝑔
𝑇 , 𝑔 = 1: 2, of 

the corrected problem with respect to the version of the isotropic problem by the present SGF-CN 

method. Our numerical experiment consists of generating two-group leakages with S12 and S20 

models, which deviate from the reference results less than 5%.  As we see in Table 2, all Pn 

scattering models, except P1, converged satisfactory, mainly for the fast group leakage, on a spatial 

grid composed of 27×28 nodes. The transport correction did not provide good approximations for 

the linearly anisotropic scattering test; this contradicts the fact that this problem is highly absorbing 

(total right leakage ∑ �̃�𝑔

𝑇2
𝑔=1 ≈ 4.2701 × 10−4) and theoretically low dependent of scattering. As 

noted in YAMAMOTO et al. [14], there are possibly physics ambiguities or the used transport 

corrected macroscopic cross sections are not mathematically consistent, a topic that has to be 

looked at in the future. 

 Figure 1 displays the profile of the scalar fluxes for the two energy groups. Also shown are the 

relative percentage deviations for 𝑃𝑛  (𝑛 = 1, 3, ⋯ ,11) with respect to the original isotropic 

problem. The scalar fluxes generated at 𝑦 = 80 cm were computed using a discretization grid with 

756 nodes and 𝑆20  quadrature. From Figure 1, significant differences are not seen with increasing 

anisotropy order. However, Figures (2.a) and (2.b) indicate that the magnitudes of the relative 

deviations increase as it one moves away from the boundary.  
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Table 1: Macroscopic cross-section (cm
-1

) for the transformed anisotropic shield problem. 

Group 𝜎𝑇
𝑔

 𝜎𝐴
𝑔

 𝜎𝑆0

𝑔→𝑔
 𝜎𝑆0

𝑔−1→𝑔
 

𝑙 > 0 

𝜎𝑆𝑙

𝑔→𝑔
 𝜎𝑆𝑙

𝑔−1→𝑔
 

1 1.10108E-1
a 6.1723E-2 6.9470E-3 - 8.9760E-3 - 

2 1.08529E-1 9.6027E-2 4.8500E-3 2.3434E-2 3.9140E-3 9.0160E-3 

a  
read as 1.10108 ×10

-1
. 

 

 

Table 2:  Percentage deviations of total right leakages of SGF-CN calculations for problem No. 1 

 

LQN  12 20  12 20 

𝒈  𝐽𝑔
𝑇 Reference

a
   

1  5.48328E-04 5.48131E-04   

2  8.78682E-04 8.78352E-04   

  P1
c 

 P3 

1  1.7320E+01
b 

1.7324E+01  -3.5280E-01 -3.6756E-01 

2  1.2784E+01 1.2791E+01  -4.3196E+00 -4.3304E+00 

  P5  P7 

1  5.5149E-02 5.9785E-02  2.9727E-03 1.0144E-02 

2  -3.9987E+00 -3.9915E+00  -4.0443E+00 -4.0353E+00 

  P9  P11
 

1  -1.0578E-03 -2.0305E-02  -7.8055E-03 -7.9333E-01 

2  -4.0480E+00 -4.0650E+00  -4.0539E+00 -4.8117E+00 

a  
results generated using the isotropic version of the shield problem (see reference [6]).  

b   
read as 1.7320×10

+1
; 

c 
Pn: indicates that the scattering macroscopic cross section was truncated after the n’th term; 
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Figure 1:  Scalar flux profiles for groups 1 and 2 at y=80cm for Problem No. 1 

 

 

 

 

Figure 2: Relative percentage deviations of scalar fluxes with respect to the isotropic problem. 
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4.2. Oil well-logging problem 

 

The  problem considered here is illustrated in Figure 3 and mocks-up a seven energy group 

version of the oil well logging problem considered in [4, 5, 6, 7]. The group macroscopic cross 

sections are listed in Table 3. 

Our numerical experiment consists of estimating the absorption rate per unit length of the z-

coordinate direction within the neutron detector region (Figure 3). To solve this problem, we  

consider different parameters for the seven energy-group S12 model in X,Y-geometry, including 

scattering orders (P0, P1, and P3), and mesh refinements. As reference results, we use the ones 

generated by the conventional LN method with the source iteration (SI) scheme [1] on a spatial grid 

composed of 112 discretization cells in the 𝑥 direction and 128 cells in the 𝑦 direction, and 3’rd 

order scattering anisotropy. Table 4 displays the relative percentage deviations of total absorption 

rate densities (𝛿𝐷𝑅
𝑇 , 𝑅 = 1,2) in the neutron detector regions of Figure 3 with respect to the 

reference solution, which was generated by the conventional LN method on a spatial grid composed 

of square nodes of 0.5 cm side. As we see, for fine spatial grids, the relative deviations of the 

detector responses, with respect to the finest grid LN reference results, are less than 5%. As the 

spatial grids coarsen, the numerical results deviate from the reference results. Moreover, we remark 

that total absorption rate densities increase with increasing scattering anisotropy. The results 

indicate that the third order scattering is necessary to solve this problem. Also, the number of 

iterations for the SGF-CN method with the NBI scheme to generate results with relative deviations 

less than 1% was roughly six times smaller than the number of iterations for the LN method with 

the SI scheme to converge this problem with relative deviations also less than 1%, with the same 

stopping criterion, using 𝜖 = 10−5. 
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Table 3:  Seven group macroscopic cross-sections (cm
-1

) for the oil well-logging problem 

zone 1   2   3 

𝒈 𝝈𝑻𝒈

𝒛  𝝈𝑺𝟎,𝒛

𝒈→𝒈
  𝝈𝑻𝒈

𝒛  𝝈𝑺𝟎,𝒛

𝒈→𝒈
  𝝈𝑻𝒈

𝒛  𝝈𝑺𝟎,𝒛

𝒈→𝒈
 

1 0.830263 0.314419  1.194676 0.634883  1.011091 0.494460 

2 0.7 0.5  0.752375 0.5  0.81519 0.5 

 Zones 1, 2 and 3 

𝒈 𝝈𝑺
𝒈→𝒈

  𝝈𝑺
𝒈→𝒈+𝟏

 

 𝜎𝑆1
 𝜎𝑆2

 𝜎𝑆3
  𝜎𝑆0

 𝜎𝑆1
 𝜎𝑆2

 𝜎𝑆3
 

1 0.3 0.2 3 35⁄   0.5 0.3 0.2 3 35⁄  

2 0.3 0.2 3 35⁄   - - - - 

  𝜎𝑇𝑔

𝑧 = (
𝑧+20

21
)

5

(
𝑔

10
) − 0.15𝛿𝑔,5, 𝑧 = 1: 3 and 𝑔 = 3: 7, 

𝜎𝑆𝑙,𝑧

𝑔′→𝑔
= (

𝑧+20

21
) (

𝑔′

100(𝑔−𝑔′+1)
) (0.7 −

𝑔+𝑔′

200
)

𝑙

, 𝑔′ = 1: 𝑔, 𝑔 = 3: 7, 𝑙 = 1: 3, 𝑧 = 1: 3. 

 

 

 



 Menezes et al.  ● Braz. J. Rad. Sci. ● 2020 15 

 

 

Figure 3:  The geometry of the oil well-logging problem.  

Table 4: Relative Percentage deviations of total absorption rate densities of SGF-CN and LN 

results for problem No. 2 

 

𝒉𝒖
𝐚 

cm 

 

 Method  
P3

b 
 P1  P0 

𝜹𝑫𝟏
𝑻 𝜹𝑫𝟐

𝑻 # it.
c 

 𝜹𝑫𝟏
𝑻 𝜹𝑫𝟐

𝑻 # it.
c
  𝜹𝑫𝟏

𝑻 𝜹𝑫𝟐
𝑻 # it.

c
 

 

4 

SGF-CN  23.51 -14.33 10  29.31 15.74 11  75.44 81.05 17 

LN  1.56 12.71 86  6.74 38.21 93  64.44 89.03 79 

 

2 

SGF-CN  6.57 -6.32 12  12.94 22.64 13  68.98 83.36 19 

LN  0.06 1.08 95  6.79 28.64 92  66.67 85.48 95 

 

1 

SGF-CN  1.85 -2.09 15  8.42 26.18 16  67.26 84.64 23 

LN  -0.00 0.07 86  6.68 27.95 88  66.57 85.28 101 

a ℎ𝑢 𝑢 = 𝑥 (or 𝑦): mesh width (or height); 

b 
Pn: indicates that the scattering macroscopic cross section was truncated after the n’th term; 

c  
# it.: number of iterations to reach the stopping criterion; 

ℎ𝑢 = 0.5-cm mesh LN results:  𝐷1
𝑇 =1.46513× 10−1 and 𝐷2

𝑇 = 9.21370× 10−8. 

 

 

 CONCLUSION 5.
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The SGF-CN method for monoenergetic SN problems in X,Y-geometry were originally 

described in BARROS et al. [8]. In this paper, we have described a generalization of the application 

of the SGF-CN method [6, 8, 9] to energy multigroup, fixed-source, SN problems in X,Y-geometry 

with linearly anisotropic scattering. This generalization was straightforward, since it was not 

necessary to change significantly the conventional SGF-CN method; the only modification is that 

the term of the scattering source became more and more dependent on the direction of motion. This 

extension is the most signicant contribution of this paper. 

The results for the two model problems considered in the previous section are very accurate 

with respect to the results reported in [6, 8, 9, 14, 15]. The offered method is very accurate for 

coarse-mesh calculations, even though we have considered flat approximations for the group 

leakage terms in the transverse-integrated SN nodal equations. In addition, the SGF-CN results 

turned out to be as accurate as the conventional LN results, without the need of using the balance 

equations for the first order spatial moments. 

In the future, we intend to consider exponential [14] and linear [15] approximations for the 

transverse-leakage terms in the SN multigroup models, so as to improve the accuracy of the 

numerical results in coarse-mesh calculations. As mentioned earlier, the reason for the high 

accuracy of the class of spectral nodal methods for coarse-mesh SN deep penetration problems is 

that the only approximation involved is the approximation for the transverse leakage terms in the 

one-dimensional transverse-integrated SN nodal equations.  Moreover, the use of the NBI scheme 

with the present SGF-CN method was much more efficient than the use of the SI scheme with the 

LN method, as the former generated accurate results in fewer iterations than the latter. A drawback 

of the offered multigroup SGF-CN method with NBI iterations is that the group node-edge average 

angular fluxes must be stored, whereas with the SI  scheme, only the group cell-average scalar 

fluxes must be  stored  for isotropic scattering.  Also the multigroup SGF-CN method, as described 

in this paper, requires fairly costly matrix calculations, before the beginning of the NBI iteration 

process.  These are the solution of one (M×G)-order eigenvalue problem for each material zone of 

the domain, and the solution of M×G linear systems of order M×G for each region. In the future, 

we intend to alleviate these negative features by using acceleration strategies to the NBI scheme, 

besides implementing parallelization architecture for both the solution of eigenvalue problems and 
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for the solution of the linear systems on independent processors. We also intend to extend the 

arbitrary anisotropic scattering, multigroup SGF-CN method for X,Y,Z-geometry problems [16]. 
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