Production and characterization of H3BO3–Li2CO3-K2CO3-MgO for dosimetry
DOI:
https://doi.org/10.15392/bjrs.v3i2.159Keywords:
borate glass, dosimetry, hygroscopicityAbstract
This work examines a borate glass produced with oxides of potassium and lithium, known as LKB. The suitability of borate glasses for thermoluminescent (TL) dosimetry has been reported in previous studies. In particular, borate glasses doped with different elements showed good characteristics in terms of linearity, sensitivity and effective atomic number. However, borate glasses are also known to have high hygroscopicity, which can reduce the sensitivity of a dosimeter. Contrary to previous studies, in this work, Mg was used as one of the main components of the glass composition. Mg is known to improve the stability of the glass, since it reduces the mobility of the alkali ions and can thus reduce the hygroscopicity of the LKB glass. Three compositions containing 0, 5 and 11 mol% of magnesium oxide were examined in order to determine the effect of magnesium specifically on luminescence, high-temperature resistance and hygroscopicity of LKB glass. The LKB glass with 11 mol% of Mg showed favorable characteristics for the production of dosimeters.
Downloads
References
ALAJERAMI, Y.S.M.; HASHIM, S.; RAMLI, A.T.; SALEH, M.A.; KADNI, T. Thermoluminescence characteristics of the Li2CO3-K2CO3-H3BO3 glass system co-doped with CuO and MgO. J Lumin, v. 143, p. 1-4, 2013.
ALAJERAMI, Y.S.M.; HASHIN, S.; GHOSHAL, S.K.; SALEH, M.A.; KADNI, T.; SARIPAN, M.I.; ALZIMAMI, K.; IBRAHIM, Z.; BRADLEY, D.A. The effect of TiO2 and MgO on the thermoluminescence properties of a lithium potassium borate glass system. J Phys Chem Solids, v. 74, p. 1816-1822, 2013.
MOFFATT, J.E.; SPOONER, N.A.; CREIGHTON, D.F.; SMITH, B.W. Luminescence properties of common glasses for aplication to retrospective dosimetry. Rad Meas, v. 47, p. 851-856, 2012.
KALNINS, C.A.G.; EBENDORFF-HEIDEPRIEM, H.; SPOONER, N. A.; MONRO, T.M. Optically stimulated luminescence in fluoride-phosphate glass for radiation dosimetry. J Am Ceramic Soc, v. 94, p. 474-477, 2011.
JUSTUS, B.L.; RYCHNOVSKY, S.; MILLER, M.A.; PAWLOVICH, K.J.; HUSTON, A.L. Optically stimulated luminescence radiation dosimetry using doped silica glass. Rad Prot Dosim, v. 74, n. 3, p. 151-154, 1997.
ELKHOLY, M.M. Thermoluminescence of B2O3-Li2O glass system doped with MgO. J Lumin, v. 130, p. 1881-1892, 2010.
MCKEEVER, S.W.; MOSCOVITCH, M. On the advanteges and disvantages of optically stimulated luminescence dosimetry and thermoluminescence dosimetry. Rad Prot Dosim, v. 104, n. 3, p. 263-270, 2003.
HOLLOWAY, D.G.; TAWNEY, D.A. The physical properties of glass. London: Wykeham Publications (London) Ltd, 1973.
D'AMORIM, R.A.P.O.; VASCONCELOS, D.A.A.; BARROS, V. S.M.; KHOURY, H.J.; SOUZA, S.O. Characterization of α-spodumene to OSL dosimetry. Rad Phys Chem, v. 95, p. 141-144, 2014.
YUKIHARA, E.G. WHITLEY, V.H.; MCKEEVER, S.W.S.; AKSELROD, A.E.; AKSELROD, M.S. Effect of high-dose irradiation on the optically stimulated luminescence of Al2O3:C. Rad Meas, v. 38, p. 317-330, 2004.
Downloads
Published
Issue
Section
License
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/