Steady-State Coupled Calculations (Serpent-GeN-FOAM) Applied to Molten Salt Fast Reactor (MSFR)

Authors

  • Tiago Augusto Santiago Vieira Centro de Desenvolvimento da Tecnologia Nuclear
  • Geovana Loren Cruz Centro de Desenvolvimento da Tecnologia Nuclear
  • Yasmim Martins Carvalho Centro de Desenvolvimento da Tecnologia Nuclear
  • Geovana Carvalho Silva Centro de Desenvolvimento da Tecnologia Nuclear
  • Keferson Almeida Carvalho Centro de Desenvolvimento da Tecnologia Nuclear
  • Rebeca Cabral Gonçalves Centro de Desenvolvimento da Tecnologia Nuclear
  • Vitor Vasconcelos Araújo Silva Centro de Desenvolvimento da Tecnologia Nuclear
  • Graiciany Paula Barros Centro de Desenvolvimento da Tecnologia Nuclear
  • Andre Augusto Campagnole dos Santos Centro de Desenvolvimento da Tecnologia Nuclear

DOI:

https://doi.org/10.15392/2319-0612.2024.2643

Keywords:

Molten Salt Fast Reactor, Monte Carlo, CFD, Extended GCI, Thorium-based fuel

Abstract

The Molten Salt Fast Reactor (MSFR) represents a significant innovation within the Generation IV nuclear reactor systems, distinguished by its use of molten salt as both fuel and coolant. This study presents a methodology for performing steady-state coupled neutronics and thermal-hydraulics (TH) calculations for the Molten Salt Fast Reactor (MSFR) using Monte Carlo (MC) and Computational Fluid Dynamics (CFD) techniques. The reactor was fed with fuel salt using LiF as base salt, thorium (232Th) as a fertile material and 233U as fissile material. Uncertainty quantification was performed using an extended Grid Convergence Index (GCI) method. The extended Grid Convergence Index (GCI) method was applied to quantify uncertainties in temperature, velocity, and power density profiles. The results highlight the significance of coupled convergence, particularly for the power density field, and reveal lateral recirculation and hot spot formation in the reactor core. The noise reduction techniques applied to the MC simulations effectively smoothed power density profiles, reducing statistical uncertainty.

Downloads

Download data is not yet available.

References

[1] Kelly, J. E. Generation IV International Forum: A decade of progress through international cooperation. Progress in Nuclear Energy, Elsevier, v. 77, p. 240-246, 2014. DOI: https://doi.org/10.1016/j.pnucene.2014.02.010

[2] Brovchenko, M. et al. Neutronic benchmark of the molten salt fast reactor in the frame of the EVOL and MARS collaborative projects. EPJ N-Nuclear Sciences & Technologies, Springer, v. 5, p. 2, 2019. DOI: https://doi.org/10.1051/epjn/2018052

[3] Siemer, D. D. Why the molten salt fast reactor (MSFR) is the “best” Gen IV reactor. Energy Science & Engineering, Wiley Online Library, v. 3, n. 2, p. 83-97, 2015. DOI: https://doi.org/10.1002/ese3.59

[4] Rouch, H., Geoffroy, O., Rubiolo, P., Laureau, A., Brovchenko, M., Heuer, D., & Merle-Lucotte, E. Preliminary thermal-hydraulic core design of the Molten Salt Fast Reactor (MSFR). Annals of Nuclear Energy, Elsevier, v. 64, p. 449-456, 2014. DOI: https://doi.org/10.1016/j.anucene.2013.09.012

[5] Fiorina, C., Aufiero, M., Cammi, A., Franceschini, F., Krepel, J., Luzzi, L., Mikityuk, K., & Ricotti, M. E. Investigation of the MSFR core physics and fuel cycle characteristics. Progress in Nuclear Energy, Elsevier, v. 68, p. 153-168, 2013. DOI: https://doi.org/10.1016/j.pnucene.2013.06.006

[6] Aufiero, M. Development of advanced simulation tools for circulating fuel nuclear reactors. Politecnico di Milano, Milan & Italy, 2014.

[7] Vasconcelos, V., Santos, A., Campolina, D., Theler, G., & Pereira, C. Coupled unstructured fine-mesh neutronics and thermal-hydraulics methodology using open software: A proof-of-concept. Annals of Nuclear Energy, Elsevier, v. 115, p. 173-185, 2018. DOI: https://doi.org/10.1016/j.anucene.2018.01.021

[8] Vieira, T. et al. Study of a fine-mesh 1:1 Computational Fluid Dynamics-Monte Carlo neutron transport coupling method with discretization uncertainty estimation. Annals of Nuclear Energy, Elsevier, v. 148, p. 107-118, 2020. DOI: https://doi.org/10.1016/j.anucene.2020.107718

[9] Leppänen, J., Valtavirta, V., Viitanen, T., & Aufiero, M. Unstructured Mesh Based Multi-Physics Interface for CFD Code Coupling in the Serpent 2 Monte Carlo Code. In Proceedings of the Conference, 2014.

[10] Gill, D. F. et al. Numerical Methods in Coupled Monte Carlo and ThermalHydraulic Calculations. Nuclear Science and Engineering, Taylor & Francis, v. 185, p. 194-205, 2017. DOI: https://doi.org/10.13182/NSE16-3

[11] Wang, J. et al. Review on neutronic/thermal-hydraulic coupling simulation methods for nuclear reactor analysis. Annals of Nuclear Energy, Elsevier, v. 137, p. 107-165, 2020. DOI: https://doi.org/10.1016/j.anucene.2019.107165

[12] Leppänen, J. Development of a new Monte Carlo reactor Physics Code. Helsinki University of Technology, Espoo & Finland, 2007.

[13] Fiorina, C. et al. GeN-Foam: a novel OpenFOAM-based multi-physics solver for 2D/3D transient analysis of nuclear reactors. Nuclear Engineering and Design, Elsevier, v. 294, p. 24-37, 2015. DOI: https://doi.org/10.1016/j.nucengdes.2015.05.035

[14] Geuzaine, C., & Remacle, J.-F. Gmsh: A 3-D Finite Element Mesh Generator with Built-in Pre- and Post-Processing Facilities. International Journal for Numerical Methods in Engineering, Wiley, v. 79, p. 1309-1331, 2009. DOI: https://doi.org/10.1002/nme.2579

[15] Giudicelli, G., Permann, C., Gaston, D., Abou-Jaoude, A., & Feng, B. The Virtual Test Bed (VTB) repository: a library of multiphysics reference reactor models using NEAMS tools. In Proceedings of the International Conference on Physics of Reactors - PHYSOR 2022, 2022. DOI: https://doi.org/10.13182/PHYSOR22-37606

[16] Di Ronco, A., Giacobbo, F., Lomonaco, G., Lorenzi, S., Wang, X., & Cammi, A. Preliminary analysis and design of the energy conversion system for the Molten Salt Fast Reactor. Sustainability, Multidisciplinary Digital Publishing Institute, v. 12, n. 24, p. 10497, 2020. DOI: https://doi.org/10.3390/su122410497

[17] Aufiero, M., Cammi, A., Geoffroy, O., Losa, M., Luzzi, L., Ricotti, M. E., & Rouch, H. Development of an OpenFOAM model for the Molten Salt Fast Reactor transient analysis. Chemical Engineering Science, Elsevier, v. 111, p. 390-401, 2014. DOI: https://doi.org/10.1016/j.ces.2014.03.003

[18] Laureau, A., Heuer, D., Merle-Lucotte, E., Rubiolo, P. R., Allibert, M., & Aufiero, M. Transient coupled calculations of the Molten Salt Fast Reactor using the transient fission matrix approach. Nuclear Engineering and Design, Elsevier, v. 316, p. 112-124, 2017. DOI: https://doi.org/10.1016/j.nucengdes.2017.02.022

[19] Tiberga, M. Development of a high-fidelity multi-physics simulation tool for liquid-fuel fast nuclear reactors. Ph.D. thesis, TU Delft University, Energy and Nuclear Engineering, 2020.

[20] Gonzalez Gonzaga De Oliveira, R. Improved methodology for analysis and design of Molten Salt Reactors. Ph.D. thesis, EPFL, 2021.

[21] OpenFOAM - the Open Source CFD Toolbox: User Guide, Version 2212, Jul. 2022.

[22] Dufëk, J., & Hoogenboom, J. Description of a stable scheme for steady-state coupled Monte Carlo-thermal-hydraulic calculations. Annals of Nuclear Energy, Elsevier, v. 68, p. 1-3, 2014. DOI: https://doi.org/10.1016/j.anucene.2013.12.017

[23] Vieira, T. A. S., Ribeiro, F. R. C., Carvalho, Y. M., Silva, V. V. A., de Paula Barros, G., & dos Santos, A. A. C. Investigation of discretization uncertainty in Monte Carlo neutron transport simulations of the Molten Salt Fast Reactor (MSFR). Brazilian Journal of Radiation Sciences, v. 11, n. 4, p. 01-27, 2023. DOI: https://doi.org/10.15392/2319-0612.2023.1317

[24] Chadwick, M. B. et al. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data. Nuclear Data Sheets, Elsevier, v. 112, n. 12, p. 2887-2996, 2011.

[25] Roache, P. J. Fundamentals of Verification and Validation. Hermosa Publishers, Socorro, NM, 2009.

[26] Celik, I., Ghia, U., Roache, P. J., Freitas, C., Coloman, H., & Raad, P. Procedure of Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. Journal of Fluids Engineering, ASME, v. 130, p. 078001, 2008. DOI: https://doi.org/10.1115/1.2960953

[27] Matozinhos, C., & Campagnole dos Santos, A. Two-phase CFD simulation of research reactor siphon breakers: A verification, validation and applicability study. Nuclear Engineering and Design, Elsevier, v. 326, 2018. DOI: https://doi.org/10.1016/j.nucengdes.2017.10.022

[28] Aufiero, M. Development of advanced simulation tools for circulating fuel nuclear reactors. Ph.D. thesis, Politecnico di Milano, 2014.

[29] Allibert, M., Aufiero, M., Brovchenko, M., Delpech, S., Ghetta, V., Heuer, D., Laureau, A., & Merle-Lucotte, E. Molten salt fast reactors. In Handbook of Generation IV Nuclear Reactors, Elsevier, p. 157-188, 2016. DOI: https://doi.org/10.1016/B978-0-08-100149-3.00007-0

[30] Alsayyari, F., Tiberga, M., Perkó, Z., Kloosterman, J. L., & Lathouwers, D. Analysis of the Molten Salt Fast Reactor using reduced-order models. Progress in Nuclear Energy, Elsevier, v. 140, p. 103909, 2021. DOI: https://doi.org/10.1016/j.pnucene.2021.103909

[31] Wright, R. N., & Sham, T.-L. Status of metallic structural materials for molten salt reactors. Idaho National Lab (INL), Idaho Falls, ID (United States); Argonne National Lab, 2018.

[32] Abou-Jaoude, A., Harper, S., Giudicelli, G., Balestra, P., Schunert, S., Martin, N., Lindsay, A., Tano, M., & Freile, R. A workflow leveraging MOOSE transient multiphysics simulations to evaluate the impact of thermophysical property uncertainties on molten-salt reactors. Annals of Nuclear Energy, Elsevier, v. 163, p. 108546, 2021. DOI: https://doi.org/10.1016/j.anucene.2021.108546

[33] German, P., Tano, M., Fiorina, C., & Ragusa, J. C. GeN-ROM—An OpenFOAM-based multiphysics reduced-order modeling framework for the analysis of Molten Salt Reactors. Progress in Nuclear Energy, Elsevier, v. 146, p. 104148, 2022. DOI: https://doi.org/10.1016/j.pnucene.2022.104148

Downloads

Published

2025-04-23

How to Cite

Steady-State Coupled Calculations (Serpent-GeN-FOAM) Applied to Molten Salt Fast Reactor (MSFR). Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4B (Suppl.), p. 2643, 2025. DOI: 10.15392/2319-0612.2024.2643. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2643. Acesso em: 30 apr. 2025.