Uso de Imagens de Linfocintilografia em Medicina Nuclear para Obter a Distribuição de Fótons de 99mTc em Modelos Computacionais de Exposição
DOI:
https://doi.org/10.15392/2319-0612.2025.2909Palavras-chave:
Medicina Nuclear, Linfocintilografia, Processamento Digital de Imagens, Simulação por ComputadorResumo
Este estudo tem como objetivo criar um catálogo de fontes para exames de Linfocintilografia de Membros Inferiores (MMII) em Medicina Nuclear, utilizando imagens reais de linfocintilografia de pacientes adultos do sexo masculino. O software DIP (Processamento Digital de Imagens), desenvolvido pelo Grupo de Pesquisa em Dosimetria Computacional e Sistemas Embarcados (GPDC&SE), foi utilizado para ajustar as imagens médicas anteroposteriores (AP) e posteroanteriores (PA) à seção frontal do fantoma antropomórfico MASH_sup (Male Adult meSH in supine position). As imagens foram somadas linha por linha, gerando um arquivo .SGI, o qual foi processado pelo software de Monte Carlo para produzir o catálogo de fontes armazenado no arquivo MSUPLC_TC99m.txt. Este arquivo contém informações para cada fatia, incluindo o número da fatia, a área dos pontos-fonte e o valor da função de distribuição acumulada (FDA) associada. Como resultado, foi gerado com sucesso um catálogo baseado em dados clínicos reais, que possibilita a substituição das fontes internas genéricas nos Modelos Computacionais de Exposição do GPDC&SE, permitindo simulações mais realistas dos exames de MMII. Futuramente, espera-se aplicar essa metodologia a pacientes do sexo feminino, outros tipos de fantomas e diferentes exames cintilográficos. Isso representa um avanço na dosimetria computacional e na medicina nuclear personalizada, permitindo simulações mais fiéis às características anatômicas e fisiológicas dos pacientes
Downloads
Referências
[1] Sociedade Brasileira de Física Médica. CONHEÇA A MEDICINA NUCLEAR. 2021. Disponível em: https://sbmn.org.br/comunicacao/conheca-a-medicina-nuclear/. Acessed on: 28 jun. 2021.
[2] ZIESSMAN, H. A.; O'MALLEY, J. P.; THRALL, J. H.; FAHEY, F. H. Medicina nuclear. Tradução Silvia Mariangela Spada. 4. ed. Rio de Janeiro: Elsevier, 2015.
[3] HIRONAKA, F. H.; SAPIENZA, M. T.; ONO, C. R.; LIMA, M. S.; BUCHPIGUEL, C. A. Medicina Nuclear: princípios e aplicações. São Paulo: Atheneu, 2012.
[4] SADEGHI, R.; KAZEMZADEH, G.; KESHTGAR, M. Diagnostic application of lymphoscintigraphy in the management of lymphoedema. Hell J Nucl Med, v. 13, n. 1, p. 6-10, 2010.
[5] SZUBA, A.; SHIN, W. S.; STRAUSS, H. W.; ROCKSON, S. The third circulation: radionuclide lymphoscintigraphy in the evaluation of lymphedema. Journal of Nuclear Medicine, v. 44, n. 1, p. 43-57, 2003.
[6] BARRAL, C. M.; STEHLING, A. P.; SILVA, A. C. M.; CASTRO, A. C.; IVO, C. S.; KORMAN, D. E.; MAGALHÃES, L. N.; CARVALHO, L. A.; FÉLIX, M. T. M.; MACHADO, F. S. Linfocintilografia de membros inferiores: estudo retrospectivo de 154 casos no período de março de 2009 a junho de 2010. Revista Médica de Minas Gerais, v. 23, n. 2, p. 182–192, 2013. DOI: https://doi.org/10.5935/2238-3182.20130030
[7] DONOHOE, K. J.; CARROLL, B. J.; CHUNG, D. K. V.; DIBBLE, E. H.; DIEGO, E.; GIAMMARILE, F.; GRANT, F. D.; LAI, S. Y.; LINDEN, H.; MILLER, M. E.; PANDIT-TASKAR, N.; TAWA, N. E. Jr.; VIDAL-SICART, S. Summary: Appropriate Use Criteria for Lymphoscintigraphy in Sentinel Node Mapping and Lymphedema/Lipedema. Journal of Nuclear Medicine, v. 64, n. 4, p. 525–528, abr. 2023. DOI: 10.2967/jnumed.123.265560. DOI: https://doi.org/10.2967/jnumed.123.265560
[8] ABOIA, L. S.; MENEZES, A. F.; CARDOSO, M. A. C.; ROSA, L. A. R. da; BATISTA, D. V. S.; CARDOSO, S. C.; SILVA, A. X.; FACURE, A. Application of digital image processing for the generation of voxels phantoms for Monte Carlo simulation. Applied Radiation and Isotopes, v. 70, n. 1, p. 144–148, 2012. DOI: 10.1016/j.apradiso.2011.08.017. DOI: https://doi.org/10.1016/j.apradiso.2011.08.017
[9] LEE, H. Monte Carlo methods for medical imaging research. Biomedical Engineering Letters, v. 14, p. 1195–1205, 2024. DOI: 10.1007/s13534-024-00423-x DOI: https://doi.org/10.1007/s13534-024-00423-x
[10] VIEIRA, J. W. Construção de Um Modelo Computacional de Exposição para Cálculos dosimétricos Utilizando o Código EGS4 e Fantomas de Voxels. Tese de Doutorado, PROTEN, UFPE, Recife, Pernambuco, 2004.
[11] CABRAL, M. O. M. Desenvolvimento de Um Modelo Computacional de Exposição para Uso em Avaliações Dosimétricas em Gestantes. Dissertação de Mestrado, PROTEN, UFPE, Recife, Pernambuco, 2015.
[12] CASSOLA, V. F. Desenvolvimento de fantomas humanos computacionais usando malhas poligonais em função da postura, massa e altura. Tese de Doutorado, PROTEN, UFPE, Recife, Pernambuco, 2011.
[13] VIEIRA, J. W.; LIMA, F. R. A. A software to digital image processing to be used in the voxel phantom development. Cell and Molecular Biology, 2009, v. 3, p. 16-22. doi: 10.1170/T869.
[14] VIEIRA, J. W. Uso de Técnicas Monte Carlo para Determinação de Curvas de Isodose em Braquiterapia. Dissertação de Mestrado, PROTEN, UFPE, Recife, Pernambuco, 2001.
[15] VIEIRA, J. W.; LEAL NETO, V.; LIMA FILHO, J. M.; LIMA, L. F.; LOPES FILHO, F. J.; ROCHA, E. A.; LIMA, F. R. A. Estimate of dose distribution in voxel phantom irradiated by a planar source modeled by translational normal probability density functions. In: 2012 International Symposium on Radiation Physics, Rio de Janeiro, 2012.
[16] VIEIRA, J. W.; LEAL NETO, V.; LIMA FILHO, J. M.; LIMA, L. F.; LIMA, F. R. A. Modelagem Monte Carlo de regiões dos ossos trabeculares de adultos para uso em modelos computacionais de exposição. In: Terceiro Congresso de Proteção Contra Radiações da Comunidade dos Países de Língua Portuguesa, Lisboa, 2012.
[17] VIEIRA, J. W.; LEAL NETO, V.; LIMA FILHO, J. M.; LIMA, F. R. A. Transformation of the normal distribution for Monte Carlo modeling of regions of adult trabecular bones for use in computational models of exposure. In: 13th International Congress of the International Radiation Protection Association, Glasgow, 2012.
Downloads
Publicado
Edição
Seção
Categorias
Licença
Direitos autorais (c) 2025 Jorge Alexandre Gomes Lins, José Wilson Vieira, Fernando Roberto de Andrade Lima, Whoody Alem Wanderley Araripe Farias , Victor Hugo Farias Ferreira da Silva; João Mário da Silva; Ferdinand de Jesus Lopes Filho, Jefferson Melo Gonçalves Pena, Larissa Cristina Silva dos Santos

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/