Simulation for non-homogeneous transport equation by Nyström method
DOI:
https://doi.org/10.15392/bjrs.v8i3A.1507Palabras clave:
transport equation, integral formulation, Nyström methodResumen
In this work we solve numerically the one-dimensional transport equation with semi-reflective boundary conditions and non-homogeneous domain. The proposed methodology consists of applying the Nyström method in order to discretize the integral formulation of this problem which is an equation involving weakly singular integral operators. For this purpose, analytical and computational techniques were applied to deal with the singularities. The Nyström method is an integral method which approximates the integral operator by a numerical quadrature and turns the integral equation into a finite dimensional linear system. This formulation allows us to use any function to describe both scattering cross section and total cross section. The algorithm is implemented in C language with the use of routines of GNU scientific library and computational techniques for code optimization. The scalar flux was calculated for two numerical quadrature, namely Gauss-Legendre quadrature and Boole's rule. The numerical results were determined for transport problem with homogeneous and non-homogeneous domains. In order to validate the proposed method-ology, our numerical results were compared with those from the literature and presented with several correct significant digits.Descargas
Referencias
CHANDRASEKHAR, S. Radiative transfer, Dover Publications, Inc., Oxford University Press, London, 1950.
LEWIS, E. E.; MILLER, J. W. F. Computational Methods of Neutron Transport, Copyright, United States of America, 1984.
DALMOLIN, D.; DE AZEVEDO F. S.; SAUTER, E. Nyström method in transport equation, PROCEEDING OF INAC 2017 INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE, Rio de Janeiro, Brazil, 2017.
DE AZEVEDO, F. S.; SAUTER, E.; KONZEN, P. H. A.; THOMPSON, M.; BARICHELLO, L. B. Integral formulation and numerical simulations for the neutron transport equation in X-Y geometry. Annals of Nuclear Energy, vol. 112, p. 735-747, 2018.
SAUTER, E.; DE AZEVEDO, F. S.; KONZEN, P. H. A. Nyström Method Applied to the Transport Equation in a Semi-Reflective Rectangle. Journal of Computational and Theoretical Transport, p. 2332-4325, 2019.
DELVES, L. M.; MOHAMED, J. L. Computational methods for integral equations, Cambridge, UK: Cambridge University Press, 1985.
NUNES, C. E. A.; BARROS, R. C. Aplicativo computacional para cálculos de blindagem com modelo de transporte Sn unidimensional e monoenergético, PROCEEDING OF INAC 2009 INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE, Rio de Janeiro, Brazil, 2009.
GARCIA, R. D. M.; SIEWERT, C. E. Radiative transfer in finite inhomogeneous plane-parallel atmospheres. Journal of Quantitative Spectroscopy e Radiative Transfer, 2009.
Free Software Foundation, INC., 2009. GSL-GNU Scientific Library.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2021 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/