Impact of voxel size on microCT morphometric analysis of the pumpkin toadlet
DOI:
https://doi.org/10.15392/bjrs.v9i1A.1548Palabras clave:
microCT, segmentation, Brachycephalus, voxel size, reconstructionResumen
Brazilian Rainforest is the habitat of many species of the genus Brachycephalus, among them is the pumpkin toadlet, Brachycephalus ephippium. X-ray microcomputed tomography is a nondestructive imaging technique which allows the visualization and analysis of internal microstructures of various samples, and has been applied on the study of these animals, enabling thorough description and characterization of new species. Brachycephalus ephippium is of particular interest for it was the first Brachycephalus species to be discovered, which makes it a common interspecies comparative basis. Cranial morphological landmarks used in biological research are very small (0.1-1mm), hence the effects of voxel size on microCT images can be relevant, and this is what was investigated in this work. Effects of reconstruction voxel size were evaluated in both visual and quantitative perspectives, which showed that an intermediary voxel size could be chosen on similar microCT applications without significant loss of information, but with great processing and storage gain, optimizing the application of the technique in such works.
Descargas
Referencias
WEISBECKER, V.; RICARDS, S.; NORMAN, J. Methods for Inexpensive, Non-Intrusive Detection of Skeletal Elements in Small Zoological Specimens Using Micro-Computed Tomography, Herpetological Review, v. 40 (2), p. 165-168, 2009.
BOUXSEIN, M. L.; BOYD, S. K.; CHRISTIANSEN, B. A.; GULDBERG, R. E.; JEPSEN, J. K.; MÜLLER, R. Guidelines for Assessment of Bone Microstructure in Rodents Using Micro-Computed Tomography, Journal of Bone and Mineral Research, v. 25 (7), p. 1468-1486, 2010.
GUTIÉRREZ, Y.; OTT, D.; TÖPPERWIEN, M.; SALDITT, T.; SCHERBER, C. X-ray computed tomography and its potential in ecological research: A review of studies and optimization of specimen preparation, Ecology and Evolution, v. 8, p. 7717-7732, 2018.
SCHAMBACH, S. J.; BAG, S.; SCHILLING, L.; GRODEN, C.; BROCKMANN, M. A.; Application of micro-CT in small animal imaging, Methods, v. 50, p. 2-13, 2010.
LANDIS, E. N.; KEANE, D. T. X-ray microtomography, Materials Characterization, v. 61, p. 1305-1316, 2010.
BORNSCHEIN, M. R.; RIBEIRO, L. F.; BLACKBURN, D. C.; STANLEY, E. L.; PIE, M. R.; A new species of Brachycephalus (Anura: Brachycephalidae) from Santa Catarina, southern Brazil, PeerJ, 4:e2629, 2018.
PIE, M. R.; RIBEIRO, L. F.; CONFETTI, A. E.; NADALINE, M. J.; BORNSCHEIN, M. R. A new species of Brachycephalus (Anura: Brachycephalidae) from southern Brazil, PeerJ, 6:e5683, 2018.
GOUTTE, S.; MASON, M. J.; CHRISTENSEN-DALSGAARD, J.; MONTEALEGRE, F.; CHIVERS, B. D.; SARRIA, F. A.; ANTONIAZZI, M. M.; JARED, C.; SATO, L. A.; TOLEDO, L. F. Evidence of auditory insensitivity to vocalization frequencies in two frogs, Scientific Reports, v. 7, 2017.
RIBEIRO, L. F.; BLACKBURN, D. C.; STANLEY, E. L.; PIE, M. R.; BORNSCHEIN, M. R. Two new species of the Brachycephalus pernix group (Anura: Brachycephalidae) from the state of Paraná, southern Brazil, PeerJ, 5:e3603, 2017.
CONDEZ, T. H.; MONTEIRO, J. P. C.; HADDAD, C. F. B. Comments on the current taxonomy of Brachycephalus (Anura: Brachycephalidae), Zootaxa, v. 4290 (2), p. 395-400, 2017.
CLEMENTE-CARVALHO, R. B. G.; ALVES, A. C. R.; PEREZ, S. I.; HADDAD, C. F. B.; DOS REIS, S. F. Morphological and Molecular Variation in the Pumpkin Toadlet, Brachycephalus ephippium (Anura: Brachycephalidae), Journal of Herpetology, v. 45 (1), p. 94-99, 2011.
VIDAL, F.; ASSIS, J. T.; LOPES, R. T.; LIMA, I. 2D/3D Quantification of bone morphometric parameter changes using X-ray microtomography with different pixel sizes, Radiation Physics and Chemistry, v. 95, p. 227-229, 2014.
CHRISTIANSEN, B. A. Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice, Bone Reports, v. 5, p 136-140, 2016.
KIM, D.; CHRISTOPHERSON, G. T.; DONG, X. N.; FYHRIE, D. P.; YENI, Y. N. The effect of microcomputed tomography scanning and reconstruction voxel size on the accuracy of stereological measurements in human cancellous bone, Bone, v. 35, p. 1375-1382, 2004.
SINGHAL, A.; GRANDE, J. C.; ZHOU, Y. Micro/Nano-CT for Visualization of Internal Structures, Microscopy Today, v. 21 (2), p. 16-22, 2013.
GOH, T. Y.; BASAH, S. N; YAZID, H.; SAFAR, M. J. A.; SAAD, F. S. A. Performance analysis of image thresholding: Otsu technique, Measurement, v. 114, p. 298-307, 2018.
OTSU, N. A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man and Cybernetics, v. 9 (1), p. 62-66, 1979.
HAHN, M.; VOGEL, M.; POMPESIUS-KEMPA, M.; DELLING, G. Trabecular bone pattern factor – a new parameter for simple quantification of bone microarchitecture, Bone, v. 13 (4), p. 327-330, 1992.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2021 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/