Artificial intelligence to evaluate diagnosed COVID-19 chest radiographs
DOI:
https://doi.org/10.15392/bjrs.v10i3.2056Palabras clave:
x-ray, Artificial inteligence, RadiographyResumen
We present a Machine Learning algorithm based on Python which can be used to aid COVID-19 diagnosis. This algorithm employs Convolutional Neural Networks (CNN) of ResNet-18 architecture from thoracic X-ray images to build a trained dataset that enables further comparisons between common pulmonary diseases and COVID-19 diagnosed patients to classify the radiological findings as being due the COVID-19 or other pathologies. We discuss the importance of setting the right parameters related to training and what they might represent in clinical procedures. We used a dataset containing 942 COVID-19 labeled radiographs from HCPA - Hospital das Clínicas de Porto Alegre and compared it to a public dataset from NIH Clinical Center containing images of pulmonary diseases. Lastly, our trained model had an accuracy of 81.76% for the imbalanced classes and an accuracy of 46.94% for the balanced classes, when compared to other pulmonary diseases such as pneumonia, edema, mass, consolidation, and fibrosis. These results disclose the difficulty of diagnosing COVID-19 from a chest radiograph as it resembles other pulmonary illnesses and makes room for further research in this matter.
Descargas
Referencias
ELKINS A.; FREITAS F. F.; SANZ V. Developing an app to interpret chest X-rays to support the diagnosis of respiratory pathology with artificial intelligence. In: J Med Artif Intell, 2020.
CASCELLA M.; RAJNIK M.; ALEEM A. et al. Features, Evaluation, and Treatment of Coronavirus (COVID-19) [Updated 2021 Apr 20]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2021. Available at: <https://www.ncbi.nlm.nih.gov/books/NBK554776/>. Last acessed 12 June 2021
WHO. WHO Coronavirus (COVID-19) Dashboard. Available at: <https://covid19.who.int>. Last acecessed 10 February 2022.
WANG D.; HU B.; HU, C.; ZHU, F.; LIU, X.; ZHANG, J. et al. Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus Infected Pneumonia in Wuhan, China. In: JAMA, 2020.
HARMON S. A. ; SANFORD T. H. ; XU S. et al. Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets. In: Nat Commun 11, 4080, 2020.
WU J. ; WONG K. ; GUR Y. et al. Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents. In: JAMA Netw Open, 2020.
ELLAHHAM S. Artificial intelligence in the diagnosis and management of COVID-19: a narrative review. In: J Med Artif Intell, 2021.
ZHU J.; SHEN B. ; ABBASI A. ; HOSHMAND-KOCHI M. ; LI H. ; DUONG T. Q. Deep transfer learning artificial intelligence accurately stages COVID-19 lung disease severity on portable chest radiographs. In: PLoS ONE, 2020.
WEHBE R. M. ; SHENG J. ; DUTTA S. ; CHAI S. ; DRAVID A. ; BARUTCU S. ; WU Y. ; CANTRELL D. R. ; XIAO N. ; ALLEN B. D. ; MACNEALY G. A. ; SAVAS H. ; AGRAWAL R. ; PAREKH N. ; KATSAGGELOS A. K. DeepCOVID-XR: An Artificial Intelligence Algorithm to Detect COVID-19 on Chest Radiographs Trained and Tested on a Large U.S. Clinical Data Set. In: Radiology, vol. 299:1, pp. E167-E176, 2021.
LOPEZ-CABRERA J. D. ; OROZCO-MORALES R. ; PORTAL-DIAZ J. A. et al. Current limitations to identify COVID-19 using artificial intelligence with chest X-ray imaging. In: Health Technol. vol. 11, pp. 411–424, 2021.
JIAO Z. ; CHOI J. W. ; HALSEY K. ; TRAN T. M. L. ; HSIEH B. ; WANG D. ; EWEJE F.; WANG R. ; CHANG K. ; WU J. ; COLLINS S. A.; YI T. Y. ; DELWORTH A. T. ; LIU T. ; HEALEY T. T.; LU S.; WANG J. ; FENG X.; ATALAY M. K. et al. Prognostication of patients with COVID-19 using artificial intelligence based on chest x-rays and clinical data: a retrospective study. In: The Lancet Digital Health, vol. 3 pp. E286-E294, 2021.
SUMMERS R. M. Artificial Intelligence of COVID-19 Imaging: A Hammer in Search of a Nail. In: Radiology, vol. 298(3), pp. E162-E164, 2021.
GitHub code repository. Available at :<https://github.com/BYTakara/covid_model>. Last accessed 8 February 2022.
NIHCC - CXR8 Data Set. Available at:<https://nihcc.app.box.com/v/ChestXray-NIHCC>. Last accessed 20 June 2021
ABELAIRA M. D. C.; ABELAIRA F. C. ; RUANO-RAVINA A. ; FERNANDEZ-VILLAR A. Use of Conventional Chest Imaging and Artificial Intelligence in COVID-19 Infection. A Review of the Literature. In: Open Respiratory Archives, vol. 3, 2021.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2022 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/