Multiphysics Computational Modeling of Nuclear Reactors Small Size Through the Coupling of Serpent Codes and Fluent
DOI:
https://doi.org/10.15392/2319-0612.2024.2425Palabras clave:
nuclear reactors, coupling, computational modelingResumen
The study of nuclear energy using computational codes has been widely explored by nuclear engineering researchers through various calculations over the years, with emphasis on neutron and thermo-hydraulic calculations. The need for designing a reactor model that would produce energy at a lower cost per MWh highlighted the importance of Small Modular Reactor (SMR) reactors. Development: The present work aims to carry out a study related to the coupling of two computational codes, SERPENT and ANSYS FLUENT, using an SMR PWR reactor model (Pressurized Water Reactor) from the company B&W Generation, called mPower. Methods: The geometry of a pin of the mPower reactor was modeled and neutronics analyses of the model were performed using SERPENT code, while thermo-hydraulic analysis was simulated using FLUENT code. A coupling algorithm between these two simulation tools was built to automate the process of obtaining operational conditions for the effective operation of the reactor. Results: This work enabled the development of a tool that performs the multiphysics coupling between neutronic and thermos-hydraulic phenomena on mPower fuel pin. Conclusion: Multiphysics simulation, which considers the interaction between neutronic and thermal dynamics, provides an enhanced understanding of reactor operation. In this simulation, the power distribution generated by the neutronic code is used as input for the thermo-hydraulic code. Conversely, the temperature distribution obtained from the thermo-hydraulic simulation is fed back into a subsequent iteration of the neutronic analysis, thus achieving a coupling between these phenomena. To obtain accurate estimates for the power and temperature distributions, an automated process based on Python programming was implemented.
Descargas
Referencias
Rodrigues, N.; Raeder, F. Assessing the potential of Small Modular Reactors (SMRs) for the nuclear industry. Energy Test, 2022.
Shahsavari, H., Smart, Stable, Reliable. IAEA Bulletin – Nuclear Power and the Clean Energy Transition, vol 61 (3), 2020.
KHATER, H., ABU-EL-MATY, T., EL-MORSHDY, S. E.-D., Thermalhydraulic modeling of reactivity accident in MTR reactors, Annals of Nuclear Energy, v. 34, n. 9, pp. 732-742, 2007.
KHATER, H., ABU-EL-MATY, T., & EL-MORSHDY, S. E.-D., Thermal-hydraulic modeling of reactivity accident in MTR reactors. Annals of Nuclear Energy, 34(9), 732–742, 2015.
RAIS, A., SIEFMAN, D., GIRARDIN, G., HURSIN, M., & PAUTZ, A., Methods and Models for the Coupled Neutronics and Thermal-Hydraulics Analysis of the CROCUS Reactor at EFPL. Science and Technology of Nuclear Installations, 2015, 1–9.
CASTRO, L., FRANÇOIS, J.-L., & GARCÍA, C., Coupled Monte Carlo-CFD analysis of heat transfer phenomena in a supercritical water reactor fuel assembly. Annals of Nuclear Energy, 141, 107312, 2020.
Betancourt, M. C.; Hernandez, C. R. G.; Dominguez, D. S.; Mazaíra, L.; Brayner, C. A.; García, J. A. R.; Iglesias, S. M., Mixed-oxide fuel strategies in an integral pressurized water reactor. Progress in Nuclear Energy, 139, 103844, 2021.
Leppanen, J.; Pusa, M.; Viitanen, T.; Valtavirta.; Kaltiaisenah, T., “The Serpent Monte Carlo code: Status, development and applications in 2013,” Annals of Nuclear Energy, vol. 82, pp. 142–150, 2015.
Sobol, I. M. A Primer for the Monte Carlo Method. Journal of the American Statistical Association, 92(440), 1997.
Robert, C. P.; Casella, G. Monte Carlo statistical methods. Springer Science & Business Media. 2010.
Kroese, D. P.; Taimre, T.; Botev, Z. I. Handbook of Monte Carlo methods. John Wiley & Sons. 2014.
Fraley, B. J. MCNPTM – A general Monte Carlo n-particle transport code version 4C. Manual LA–13709–M, Los Alamos, 2000.
Pritchard, P.; Mitchell, J., Fox and McDonald’s Introduction to Fluid Mechanics, 9th Edition. Wiley, 2015.
Zingg. D.W., Fundamentals of Computational Fluid Dynamics, NASA Ames Research Center, University of Toronto Institute for Aerospace Studies, Toronto, CN, 1999.
BotCity. Available at: https://pt-br.botcity.dev. Accessed on: 13 Oct. 2022.
Python. Available at : https://docs.python.org/3/library/tkinter.html. Accessed on : 12 Oct. 2022.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/