Investigation of polymer-based BaO and rGO nanocomposites for application in low energy X ray attenuation
DOI:
https://doi.org/10.15392/bjrs.v7i2B.431Palabras clave:
BaO, rGO nanocomposites, X ray AttenuationResumen
Polymeric materials can serve as a matrix for the dispersion of nanomaterials with good attenuation features, resulting in lightweight, conformable, flexible, lead-free and easy-to-process materials. Thus, some well-known radiation shielding materials could be used in low proportion as a filler, for the formation of new materials. On the other hand, nanostructured carbon materials, such as graphene oxide (GO) have been reported recently to show enhanced attenuation properties. For the present work, poly(vinylidene fluoride) [PVDF] homopolymers and its fluorinated copolymers were filled with metallic oxides and nanosized reduced graphene oxides (rGO) in order to produce nanocomposites with increased low energy X ray attenuation efficiency. We objective is to investigate the X ray shielding features of multilayered PVDF/rGO and P(VDF-TrFE)/BaO composites. PVDF/rGO overlapped with P(VDF-TrFE)/BaO thin films were sandwiched between two layers of kapton films of different thickness. The linear attenuation coefficients were measured for monochromatic X ray photons with energy of 8.1 keV. The samples were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Ultraviolet–visible (UV-vis) and Fourier-Transform Infrared (FTIR) Spectroscopy. The linear attenuation coefficient of the multilayered sample was evaluated and compared with the linear attenuation of the individual constituents. It was observed an increase in the attenuation coefficient of the overlapping samples. It is demonstrated that thin films of rGO nanocomposite with thickness of only 0.32 mm can attenuate up to 50% of X ray beams with energy of 8.1 keV, justifying further investigation of these nanocomposites as X ray or gamma radiation attenuatorsDescargas
Referencias
GREGONO, M.; CHAVES, N. Optimization of Polymer Nanocomposite Properties, John Wiley & Sons, Nova Jersey, EUA ,2009
DUCROT, P.H.; DUFOUR, I.; AYELA, C. Optimization of PVDF-trfe Processing Conditions For The Fabrication Of Organic MEMS Resonators, Nature, 6, pp.19426, DOI: 10.1038/srep19426, 2016
. GAIER, J.R;. ET. AL. Effect of Intercalation in Graphite Epoxy Composites on the Shielding of High Energy Radiation, NASA Technical Memorandum 107413, National Aeronautics and Space Administration: Washington, D.C ,DOI: 10.1557/JMR.1998.0320, 1997
Nambiar, S.; Yeon, J.T. Polymer-composite materials for radiation protection, ACS Appl. Mater. Interfaces, v. 4, pp. 5717-5726, DOI: 10.1021/am300783d, 2012
FUJIMORI, T.; ET AL. Enhanced X rays shielding effects of carbon nanotubes, Mater Express, v. 1, p. 273-278, DOI:10.1166/mex.2011.1043, 2011
VIEGAS, J.; et. al. Increased X rays attenuation efficiency of graphene-based nanocomposite. Industrial e Engineering Chemistry Research, DOI: 10.1021/acs.iecr.7b0271, 2017.
NAIR J.; POTTS, R., ET AL. Graphene-based polymer nanocomposites Polymer, v. 52, p. 5-25,. DOI:10.1016/j.polymer.2010.11.042, 2011
GRIGORENKO, R.; ET. AL. Fine structure constant defines visual transparency of
graphene. Science, p. 320, 1308 DOI:10.1126/science.115696, DOI:10.1126/science.115696, 2008
RUBRICE, K.;ET AL. Dielectric Characteristics and Microwave Absorption of Graphene Com-posite Materials. Materials, 9, 825 DOI:10.3390/ma9100825, 2016.
COMPTON O.; Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Material. V. 6, p. 711 - 723, 2010 <http://onlinelibrary.wiley.com/doi/10.1002/pc.24292/epdf> Last accessed: 28 Nov. 2017.
RAJI, M.; Influence of graphene oxide and graphene nanosheet on the properties of Polyvinylidene Fluoride Nanocomposites. Polymer Composites, v. 38, DOI:10.3390/ma9100825, 2017.
THEMA, F.; ET.AL. Synthesis and Characterization of Grapheme Thin Films by Chemical Reduction of Exfoliated and Intercalated Graphite Oxide. Journal of Chemistry, . DOI: 101155/2013/150536, 2013.
FONTAINHA, C.; Desenvolvimento de Compósitos Poliméricos com Metais Atenuadores e Estudo da Eficiência de Atenuação da Radiação para Aplicação em Procedimentos Radiológicos. PhD thesis of Department of Nuclear Engineering of Universidade Federal de Minas Gerais. Belo Horizonte, 2016.
DEEPAK, A.; SHANKAR, P. Exploring the properties of lead oxide and tungsten oxide based graphene mixed nanocomposite films. Nanosystems : Physics, Chemistry, Mathematics,v. 7, p. 502-505, DOI:10.17586/2220-8054-2016-7-3-502-505, 2016.
MENG, N. ET AL. Crystallization kinetics and enhanced dielectric properties of free stand-ing lead-free PVDF based composite films, Polymer,v. 121, p.88-96, 2017.
ACHABYA, M.; ACHABYA, E.; ET AL. Piezoelectric β-polymorph formation and properties enhancement in graphene oxide – PVDF nanocomposite films. Applied Surface Science, v. 258, p. 7668-7677, 2012.
National Institute of Standards and Technology's web site. NIST. 2015.: <http://srdata.nist.gov/gateway/gateway?dblist=0> Last accessed: 28 Nov. 2017.
GAIER, J.; ET. AL. Effect of intercalation in graphite epoxy composites on the shielding of high energy radiation”; NASA Technical Memorandum 107413 ; National Aeronautics and Space Administration: Washington, D.C, DOI:10.1557/JMR.1998.0320,1997.
NAMBIAR, S.; YEON, J. Polymer-composite materials for radiation protection. ACS Appl. Mater. Interfaces, v. 4, p. 5717-5726, . DOI: 10.1021/am300783d, 2012.
AL-SAYGH, A.; ET. AL. Flexible pressure sensor based on pvdf nanocomposites containing reduced graphene oxide-titania hybrid nanolayers. Polymers, v. 9, p.33, DOI:10.3390/polym90200332017.
RAHMAN, A.; ET. AL. Synthesis of PVDF-graphene nanocomposites and their properties. J. Alloys Compd.v. 581, p.724, 2013.
RAHMAN,A.;, MD.; ET.AL. Fabrication and characterization of highly efficient flexible ener-gy harvesters using PVDF−graphene nanocomposites. Smart Mater. Struct. 22 (8), 085017, 2013.
JANG, J.; ET.AL. Structures and physical properties of graphene/PVDF nanocomposite films prepared by solution-mixing and melt-compression. Fibers Polym, v. 14, p.1332, 2013.
GAHLOT, S.; KULSHRESTHA, V.; AGARWAL, G.; JHA, P. K. Synthesis and Characteriza-tion of PVA/GO Nanocomposite Films. Macromol. Symp. 2015, 357, 173.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2019 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/