Characteristics of Pb2+ doped CsI matriz under gamma and neutron excitations
DOI:
https://doi.org/10.15392/bjrs.v7i2A.595Palabras clave:
scintillator, crystal growth, gamma radiation, neutron radiation.Resumen
In recent years, there has been an increasing interest in finding new fast scintillating material or improve the characteristics of known scintillators for the demand of high energy physics, industrial and nuclear medical applications. Ions divalent lead Pb2+ built in some crystal structures are efficient emission centers and their applications in scintillators was and still is the reason of an intensive study of emission properties of different compounds containing these ions. In this context, the crystals of Pb2+ doped CsI matrix were grown by the vertical Bridgman technique and subjected to annealing in vacuum of 10-6 mbar and continuous temperatura of 350°C, for 24 hours, and then they were employed. To evaluate the response of the CsI:Pb scintillator crystal to gamma radiation, radioactive sources of 137Cs (662 keV), 60Co (1173 keV and 1333 keV), 22Na (511 keV and 1275 keV) and 133Ba (355 keV) was used. The operating voltage of the photomultiplier was 2700 V for the detection of gamma rays and the accumulation time in the counting process was 600 s. The scintillator response to neutron radiation from a radioactive source of Am/Be with energy range of 1 MeV to 12 MeV was available. The activity of the AmBe source was 1Ci Am. The fluency was 2.6 x 106 neutrons / second. The operating voltage of the photomultiplier tube was 1300 V. The accumulation time in the counting process was 600 s. With the results obtained, it may be observed that the crystals are sensitivetothese radiations.
Descargas
Referencias
KNOLL,G. F. Radiation Detection and Measurement, 4th ed. New York, NY, USA:John Wiley & Sons, 2010.
TSOULFANIDIS, N. Measurement and Detection of Radiation, New York, N.Y.: Harper & Row, 1983.
ZAZUBOVICH, S. Physics of halide scintillators. Radiation Measurements, v. 33, p. 699-704, 2001.
SELVASEKARAPANDIAN, S.; BRAHMANANDHAN, G.M.; MALATHI, J.; JOSEPH, V. Thermoluminescence and photoluminescence studies on gamma irradiated CsI:Pb2+ crystals. Radiation Effects & Defects in Solids, v.161, n°9, p.559-570, 2006.
BABIN, V.; KRASNIKOV, A.; NIKL, A.; NITSCH, K.; STOLOVITS, A.; Zazubovich, S. Luminescence and relaxed excited state origin in CsI:Pb crystals. Journal of Luminescence, v.101, p.219-226, 2003.
KESZTHELYI, L.S.; FOLDVÁRI, I.; VOSKA, R.; FODOR, Z.; SERES, Z. Decay time measurements on pure CsI scintillators prepared by different methods. Nucl Instrum Methods Phys Res, v.A303, p. 374-380, 1991.
BRIDGMAN, P. W. Proc. Amer. Acad. Arts Sci., v. 60, p. 303-383, 1925.
PEREIRA, M.C.C.; FILHO, T.M. Scintillation Characteristics of CsI Crystal Doped Br under Gamma and Alpha Particles Excitation. Materials Sciences and Applications, v. 05, p. 368-377, 2014.
PEREIRA, M.C.C.; FILHO, T.M.; HAMADA, M.M. The effect of Pb 2+ dopant in the crys-tal of CsI and its application as scintillation detector: a study of alpha particles. Radiation Effects and Defects in Solids, v. 167, p. 921-928, 2012.
MARGULIES,M.; WITOMSKI,P.; DUFFAR,T. Optimization of the Bridgman crystal growth process. Journal of Crystal Growth, v.266, p. 175-181, 2004.
RAVI, B.; RAJARAJAN,G. Study on growth and optical, scintillation properties of thalli-um doped cesium iodide scintillator crystal, Oriental Journal of Chemistry, v. 30, p. 581-586, 2014
.
HAO,G.R.; HUI,Z.S.; CHUAN,Z.Z.; KAN, Z.; FAN, Y.; YING,L.H.; FENG, C.X. Luminescence and decay time properties of pure CsI crystals. Journal of Inorganic Materials, v.32 (2), p.169-174, 2017.
AMSLER, C.; GROGLER, D.; FOFFRAIN, W.; LINDELOF, D.; MARCHESOTTI, M.; NIEDERBERGER, P.; PRUYS, H.; REGENFUS, C.; RIEDLER, P.; ROTONDI, A. Temperature dependence of pure CsI: scintillation light yeld and decay time. Nucl Instrum Methods Phys Res., v.A480, p.494-500, 2002.
MIKHAILIK, V. B.; KAPUSTYANYK, V; TSYBULSKYI, V.; RUDYK, V.; KRAUS, H. Luminescence and scintillation properties of CsI: A potential cryogenic scintillator. Phys Status Solidi B, v.252, n°4, p. 804-810, 2015.
R. Novoyny, “Inorganic scintillators-a basic material for instrumentation in physics”, Nu-cl.Instrum. Methods Phys. Res. v.A537, pp.1-5 (2005).
CMELCHER, C. L. Perspectives on the future development of new scintillators. Nucl Instrum Methods Phys Res, v.537, p. 6-14, 2005.
KOBAYASHI, M.; USUKI, Y.; ISHII, M.; ITOH, M.; KIKL, M. Further study on diffe-rent dopings into PbWO4 single crystals to increase the scintillation light yield. Nucl Instrum Me-thods Phys Res, v.540, p.381-394, 2005.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2021 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/