Two-dimensional transient thermal analysis of a fuel rod by finite volume method
DOI:
https://doi.org/10.15392/bjrs.v8i3B.617Palabras clave:
Finite Volume Method, Thermal analysis, AP1000 nuclear reactor.Resumen
One of the greatest concerns when studying a nuclear reactor is the warranty of safe temperature limits all over the system at all times. The preservation of core structure along with the constraint of radioactive material into a controlled system are the main focus during the operation of a reactor. The purpose of this paper is to present the temperature distribution for a nominal channel of the AP1000 reactor developed by Westinghouse Co. during steady-state and transient operations. In the analysis, the system was subjected to normal operation conditions and then to blockages of the coolant flow. The time necessary to achieve a new safe stationary stage (when it was possible) was presented. The methodology applied in this analysis was based on a two-dimensional survey accomplished by the application of Finite Volume Method (FVM). A steady solution is obtained and compared with an analytical approach that disregards axial heat transport to determine its relevance. The results show the importance of considering axial heat transport in this type of study. A transient analysis shows the behavior of the system when submitted to coolant blockage at channel’s entrance. Three blockages were simulated (10%, 20% and 30%) and the results show that, for a nominal channel, the system can still be considerate safe (there’s no bubble formation until that point).
Descargas
Referencias
MATZIE, R. A. AP1000 will meet the challenges of near-term deployment. Nuclear Engineer-ing and Design, v. 238, p. 1856-1862, 2008.
SCHULZ, T. L. Westinghouse AP1000 advanced passive plant. Nuclear Engineering and De-sign, v. 236, p. 1547-1557, 2006.
YU, H.; TIAN, W.; YANG, Z.; SU, G. H.; QIU, S. Development of Fuel ROd Behavior Analy-sis code (FROBA) and its application to AP1000. Annals of Nuclear Energy, v. 50, p. 8-17, 2012.
LAMARSH, J. R. Introduction to nuclear reaction theory, Addison Wesley Publishing Com-pany, 1966.
VERSTEEG, H. K.; MALALASEKERA, W., An Introduction to Computational Fluid Dy-namics: The Finite Volume Method, Pearson Education, 2007.
EL-WAKIL, M. M., Nuclear Heat Transport, Scraton: International Textbook Company, 1971.
KIM, H. T.; RHEE, B. W.; PARK, J. H. Application of the finite volume method to the radial conduction model of the CATHENA code. Annals of Nuclear Energy, v. 33, p. 924-931, 2006.
SILVA, M. A. B.; NARAIN, R. A quantitative estimate on the heat transfer in cylindrical fuel rods to account for flux depression inside fuel. Progress in Nuclear Energy, v. 69, p. 29-34, 2013.
AINSCOUGH, J. B. Gap conductance in Zircaloy-clad LWR fuel rods. United Kingdon Atomic Energy Authority, 1982.
IAEA - International Atomic Energy Agency. Thermophysical Properties Database of Ma-terials for Light Water Reactors and Heavy Water Reactors, Vienna: IAEA, 2006, 397p.
Westinghouse Electric Company - Westinghouse AP1000 Design Control Document Rev. 19 Available at: <https://www.nrc.gov/docs/ML1117/ML11171A500.html>. Last accessed: 14 Nov. 2017.
LUSCHER, W. G.; GEELHOOD, K. J. Material Property Correlations: Comparisons between FRAPCON-4.0, FRAPTRAN 2.0, and MATPRO. U.S. Nuclear Regulatory Commission: Office of Nuclear Regulatory Research, 2014.
WHITMARSH, C. L. Review of Zircaloy-2 and Zircaloy-4 Properties Relevant to N.S. Sa-vannah Reactor Design. No. ORNL-3281, Oak Ridge: Oak Ridge National Laboratory, Atomic Energy Commission, 1962.
NIST - National Institute of Standards and Technology, NIST Reference Fluid Thermody-namic and Transport Properties Database (REFPROP): Version 9.1 User’s Guide, National Institute of Standards and Technology, 2013.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2021 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/