Characterization of PET image using global and local entropy
DOI:
https://doi.org/10.15392/bjrs.v3i1A.128Palavras-chave:
PET, ROI, AlgorithmsResumo
In the clinical practice PET imaging provides semi-quantitative information about metabolic activities in human body, using the Standardized Uptake Value (SUV). The SUV scale, by itself, does not to establish thresholds between benign and malignant uptake in high-level analyses, such as pattern recognition. The objective of this work is to investigate in PET image volume with high-uptake regions, two additional descriptors, besides the SUV measurements: the amount of information given by the Hartley function (IHartley) and its expected value, the Shannon entropy (H). To estimate these descriptors, two models of the probability distribution were obtained from a high-uptake region of interest (ROI): (i) the normalized grayscale histogram from SUV intensity levels (Pi), which provides global IHG and HG; and (ii) the normalized gray level co-occurrence matrix (GLCM) of these graylevels (Pg,k) at the same range, which provides local IHL and HL. The beginning results have shown that for the ROI (12x12 pixels) and for mean SUV ranging of 6.6213±0. 5196 g/ml, with SUVMax = 14,7372 g/ml, the global entropy (2,3778±0,0364) has a higher average uncertainty that local entropy (2,2069±0,0758), with a confidence interval of 99.95% (pvalue < 0,05%). This can be explained by analysing the sample from the amount of information, IHartley, noting that on average local Pg,k provides up to 90,55±9,18% more information when compared to the amount of information given by global Pi. Therefore, these initial results suggest that, for build algorithms for PET image segmentations using threshold based in entropy measures, it is more appropriate to use a distribution functions estimator which considers the local information of the pixels intensities. The main application of this approach will be for, among other things, to construct pathological phantoms from PET images for dosimetry applications.
Downloads
Referências
Journal
CATANA C., PROCISSI D., WU Y., JUDENHOFER MS., QI J.,PICHLER B.J., JA-COBS R.E., CHERRY S.R., Simultaneous in vivo positron emission tomography and magnetic resonance imaging, 105(10):3705-10, 2008.
Book
ZAID H., Quantitative Analysis in Nuclear Medicine Imaging., 1st Edition, New York, Springer, 2006.
Journal
P. E. KINAHAN, J. W. FLETCHER, Positron emission tomography-computed tomog-raphy standardized uptake values in clinical practice and assessing response to therapy, Seminars in ultrasound, CT, and MR volume 31 (6) (1 December 2010) 496{505. doi:10.1053/j.sult.2010.10.001
Journal
FINBARR O’S., SUPRATIK R., JANET E., A statistical measure of tissue heterogeneity with ap-plication to 3D PET sarcoma data, Biostatistics (2003), 4, 3, pp. 433-448.
EL NAQA, I., P. GRIGSBY, A. APTE, E. KIDD, E. DONNELLY, D. KHULLAR, S. CHAUDHARI, D. YANG, M. SCHMITT, RICHARD LAFOREST, W. THORSTAD, AND J. O. DEASY, Exploring feature-based approaches in PET images for predicting cancer treatment outcomes, Pattern Recognit. Jun 1, 2009; 42(6): 1162–1171.
H. M., C. LE REST C., VAN BAARDWIJK A., L. P., E. A. PRADIER O, Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delin-eation., J. Nucl, 2011, 1690-7.
TIXIER F., REST C.C., HATT M., ALBARGHACH N., PRADIER O., METGES J.P., CORCOS L., VISVI-KIS D., Intratumor heterogeneity characterized by textural features on baseline 18FFDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer., J. Nucl. Med., 2011.
Book
ZEMANSKY, M. Calor e Termodinâmica . 5. Ed.: Guanabara, Edição Brasileira, 1978.
COVER, T.; THOMAS, J. Elements of Information Theory. 1. Ed.: Wiley–Interscience Publica-tion, New York, 1991.
AVERY, J. Information Theory and Evolution, 1. Ed.: Cingapura: World Scientific, 2003.
COVER, T.; THOMAS, J. Elements of Information Theory. 1. Ed.: Wiley–Interscience Publica-tion, New York, 1991.
Journal
JANSING, E.; ALBERT, T.; CHENOWETH, D. Two-dimensional entropic segmentation. Pattern Recognition Letters, v. 20, p. 329–336, 1999.
Book
GONZALEZ, R.C. AND WOODS, R.E.(2008). Digital Image Processing, PEARSON- Prentice Hall, Reading.
Journal
ROUSSON, M. AND CREMERS, D. Efficient Kernel Density Estimation of Shape and Intensity Priors for Level Set Segmentation, G. Gerig (Ed.), Medical Image Comput. and Comp.-Ass. Interv. (MICCAI), Palm Springs, Oct. 2005. LNCS Vol. 3750, pp. 757–764.
Book
MCLACHLAN, G. AND PEEL, D. (2000). Finite Mixture Models Wiley, New York.
MCKINNEY, W. (2012). Python for Data Analysis, O’Reilly Media.
Website
PyDICOM User Guide, https://code.google.com/p/pydicom/, accesses in May 2014.
Book
BARBETTA, P.A., REIS, M.M and BORNIA, A.C., Estatística para Cursos de Engenharia e Infor-mática, 3th Edition, page 379, Atlas, 2010.
Journal
ORLHAC F, SOUSSAN M, MAISONOBE JA, GARCIA CA, VANDERLINDEN B, BUVAT I., Tumor texture analysis in 18F-FDG PET: relationships be-tween texture parameters, histogram indices, standardized uptake values, metabolic vol-umes, and total lesion glycolysis, J Nucl Med. 2014 Mar;55(3):414-22. doi: 10.2967/jnumed.113.129858. Epub 2014 Feb.
Downloads
Publicado
Edição
Seção
Categorias
Licença
Direitos autorais (c) 2015 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/