MELCOR steady state calculation of the generic PWR of 40MWth
DOI:
https://doi.org/10.15392/bjrs.v8i3A.1357Palavras-chave:
severe accident, MELOR, PWRResumo
After the two most significant nuclear accidents in history – the Chernobyl Reactor Four explosion in Ukraine
(1986) and the Fukushima Daiichi accident in Japan (2011) –, the Final Safety Analysis Report (FSAR) included a new chapter (19) dedicated to the Probabilistic Safety Assessment (PSA) and Severe Accident Analysis (SAA), covering accidents with core melting. FSAR is the most important document for licensing of siting, construction, commissioning and operation of a nuclear power plant. In the USA, the elaboration of the FSAR chapter 19 is according to the review and acceptance criteria described in the NUREG-0800 and U.S. Nuclear Regulatory Commission (NRC) Regulatory Guide (RG) 1.200. The same approach is being adopted in Brazil by National Nuclear Energy Commission (CNEN). Therefore, the FSAR elaboration requires a detailed knowledge of severe accident phenomena and an analysis of the design vulnerabilities to the severe accidents, as provided in a PSA – e.g., the identification of the initiating events involving significant Core Damage Frequency (CDF) are made in the PSA Level 1. As part of the design and certification activities of a plant of reference, the Laboratory of Risk Analysis, Evaluating and Management (LabRisco), located in the University of São Paulo (USP), Brazil, has been preparing a group of specialists to model the progression of severe accidents in Pressurized Water Reactors (PWR), to support the CNEN regulatory expectation – since Brazilian Nuclear Power Plants (NPP), i.e., Angra 1, 2 and 3, have PWR type, the efforts of the CNEN are concentrated on accidents at this type of reactor. The initial investigation objectives were on completing the detailed input data for a PWR cooling system model using the U.S. NRC MELCOR 2.2 code, and on the study of the reference plant equipment behavior – by comparing this model results and the reference plant normal operation main parameters, as modeled with RELAP5/MOD2 code.
Downloads
Referências
Nuclear Energy Agency of the Organisation for Economic Co-Operation and Development, Five years after the Fukushima Daiichi accident: Nuclear Safety Improvements and Lessons Learnt, NEA No. 7284, pp.80 (2016).
Te-Chuan Wang, Shih-Jen Wang, Jyh-Tong Teng, Comparison of Severe accident results among SCADAP/RELAP, MAAP and MELCOR codes, Nuclear Technology150, 2, pp. 145-152 (2005).
J. P van Dorsselaere, C. Seropian, P. Chatelard, F. Jacq, J. Fleurot, P. Giordano, N. Reinke, B. Schwinges, H. J. Allelein & W Luther, The ASTEC Integral Code for Severe Accident Simulation, Nuclear Techonogy, 165, pp. 293-307 (2009).
Hirochi Ujita, Yoshinori Nakadai, Takashi Ikeda and Masaroni Naitoh , PWR and BWR plant analyses by Severe Accident Analysis Code SAMPSON for IMPACT Project,GENES4/ANP2003, Kyoto, Japan, September 15-19, pp. 15-19,1074 (2003).
Longze Li, Mingjun Wang, Wenxi Tian, Guanghui Su, Suizheng Qiu, Severe accidentanalysis for typical PWR using the MELCOR code, Progress in Nuclear Energy, 71,pp. 30-38 (2014).
Chun-Sheng Chien, Shin-Jen Wang and Te-Chuan Wang, MELCOR Self-InitializationAlgorithm for Pressurized Water Reactions and its Importance in Accident Analysis, Nuclear Technology, 119, pp. 194-200 (1997).
L. L. Humphries, et al. MELCOR Computer Code Manuals Vol. 1: Primer and Users Guide Version 2.2.9541 (2017).
L. L. Humphries, et al. MELCOR Computer Code Manuals Vol. 2: Primer and Users Guide Version 2.2.9541 (2017).
J. Cardoni, R. Gauntt, D. Kalinich and J. Phillips, MELCOR simulations of severe accident at Fukushima Daiichi Unit 3, Nuclear Technology, 186, pp. 179-197 (2014).
T. Sevon, A MELCOR model of Fukushima Daiichi Unit 3 accident, Nuclear Engineering and Design, 284, pp. 80-90 (2015).
N. S. Lapa, L.C. M. Pereira, A. A. Madeira, O. J. M. Wellele, G. Sabundjian, S. M. Lee and T. Steinrotter, Simulation of a station black out at the Angra 2 NPP with MELCOR Code, Technical Meeting on the Status and Evaluation of Severe Accident Simulation
Codes for Water Cooled Reactors, International Atomic Energy Agency, Vienna Austria, October, pp. 9 -12 (2017).
M. Genta Maragni, A. Belchior Junior and J. A. Onoda Pessanha, “Modelagem e estado estacionário do reator da INAP com o RELAP5/MOD2”, In: INTERNATIONANUCLEAR ATLANTIC CONFERENCE, São Paulo, Brazil (1997).
V. H. Ransom et al, RELAP5/MOD2 Code Manual, NUREG/CR-4312, EGG-2396, (1985).United States Nuclear Regulatory Commission, Standard Review Plan for the Review of Safety Reposts for Nuclear Power Plants: LWR Edition, NUREG‐0800 (2007).
M.F. Young, MELCOR Development for HTGR Applications, In: Cooperative Severe Accident Research Program, CSARP Meeting, Bethesda, USA, September 16-18 (2008).
F. Alcaro, MELCOR modeling and experience at NRG, In: European MELCOR Group User Group, EMUG Meeting, Boston, USA, June 18-19 (2015).
]. J. Cardoni, MELCOR model for an experimental 176x17 Spent Fuel PWR assembly, SAND2010-8249 (2010).
M. Malcki, L. Pienkowski, K. Skolik, Simulation of SB-LOCA of typical PWR with MELCOR code, In: IOP Conference Series Earth and Environmental Science, January 24, 214, 012071(2019).
M. Pescarini, F. Mascari, D. Mostacci and F De Rosa, Analysis of unmitigated large break loss of coolant accidents using MELCOR code, Journal of Physics Conference Series, 923,012009 (2017).
Y. Jin, W. Xu, X. Liu, In- and ex-vessel coupled analysis of IVR-ERVC phenomenon for large scale PWR, Annals of Nuclear Energy, 80, pp. 322-337 (2015).
M. Pavlova, P. P Groudev and V. Hadjiev, Development and validation of VVER-1000input deck for severe accident calculations with MELCOR Computer Code, In: XV International School on Nuclear Physics, Neutron Physics and Nuclear Energy, Varna, Bulgaria, October (2003).
S. B. Rodriguez, Using the Coupled MELCOR-RELAP5 Codes for Simulation of the Edward’s Pipe, SAND2002-2828c (2002).
Downloads
Publicado
Edição
Seção
Licença
Direitos autorais (c) 2021 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/