Estudo da imagem de materiais impressos em 3D para desenvolvimento de fantomas para radiologia diagnóstica

Autores

  • Marcus Oliveira Federeal Institute of Education, Science, Technology of Bahia
  • Matheus Savi Department of Health. Federal Institute of Education, Science and Technology of Santa Catarina –IFSC
  • Adriano Vitor Department of Health. Federal Institute of Education, Science and Technology of Santa Catarina –IFSC
  • Daniel Villani Instituto de Pesquisas Energéticas e Nucleares – IPEN/USP
  • Marco Andrade Department of Health. Federal Institute of Education, Science and Technology of Santa Catarina –IFSC
  • Carlos Ubeda Medical Technology Department. Health Sciences Faculty, Tarapaca University, 1010069, Arica, Chile
  • Mauricio Mitsuo Monção Federeal Institute of Education, Science, Technology of Bahia, 40301-015, Salvador, Bahia, Brasil

DOI:

https://doi.org/10.15392/2319-0612.2024.2556

Palavras-chave:

Impressão 3D, fantoma, radiologia diagnóstica

Resumo

As técnicas de impressão 3D têm encontrado aplicações em diversos campos, melhorando significativamente os processos de design e fabricação. O impacto deste crescimento é perceptível na radiologia, onde a impressão 3D tem sido aplicada ao desenvolvimento de ferramentas de controle de qualidade e ao avanço de técnicas de dosimetria. A impressão 3D tem a vantagem de possuir uma grande variedade de materiais plásticos que podem ser utilizados no processo de fabricação. Há escassez de trabalhos desenvolvidos para avaliar a atenuação do feixe de raios X dos materiais utilizados na impressão de modelos 3D para desenvlvimento de fantomas. Este artigo tem como objetivo mostrar nossos resultados na pesquisa das características de imagem de 15 materiais impressos em 3D. Os objetos 3D foram impressos como cubos de 20 x 20 x 20 mm3 com preenchimento de 100%, padrão estrutural retilíneo de 45°/45°. As imagens foram adquiridas em uma unidade de raios X DR e foram analisadas com o software ImageJ. Os valores dos pixels de imagem, a relação sinal-ruído – SNR e a relação contraste-ruído – CNR  foram avaliados e comparados entre os cubos impressos em 3D e um simulador de tórax padrão. Ao comparar a relação sinal-ruído para materiais plásticos e estruturas torácicas, foram encontradas diferenças significativas. Resultados semelhantes foram encontrados para o relação contraste-ruído. As diferenças foram notadas por meio do teste de Kruskal Wallis para os materiais plásticos Tungstênio e Bismuto que demonstraram valores estatisticamente significativos de relação sinal-ruído signal-to-noise ratio  em comparação ao pulmão (p < 0,0001) e à costela direita (p < 0,0001). descobriu-se que os filamentos de tungstênio e bismuto têm potencial para representar o relação sinal-ruído para estruturas intermediárias e de alta densidade. a escápula foi a única estrutura anatômica sem diferença estatisticamente significativa do relação contraste-ruído em realação ao SILK (p ≥ 0,074), ABS (p ≥ 0,086), PVA (p ≥ 0,917) e ABSpremium (p ≥ 0,955). O estudo demonstrou potenciais materiais de impressão 3D para desenvolvimento de simuladores de radiologia diagnóstica e revelou importantes características de imagem para os materiais plásticos usando a técnica Fused Filament Fabrication.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

CRAMER, J.; QUIGLEY, E.; HUTCHINS, T.; , SHAH, L. Educational Material for 3D Visualization of Spine Procedures: Methods for Creation and Dissemination J. Digit. Imaging, v.30, n.3,p.296-300, 2017.

KAMOMAE. T.;, SHIMIZU, H.; NAKAYA, T.; OKUDAIRA,K.;AOYAMA, T.; OGUCHI, H.; KOMORI, M.; KAWAMURA, M.; OHTAKARA,K.; MONZEN, H.; ITOH, Y.; NAGANAWA,S.; Three-dimensional printer-generated patient-specific phantom for artificial in vivo dosimetry in radiotherapy quality assurance Phys. Medica, v. 44 , p. 205-211, 2017

SCULPTEO. The State of 3D Printing Report 2018 Disponível em: https://www.sculpteo.com/en/ebooks/state-of-3d-printing-report-2018/. Acesso em: 27 ago. 2024

SHIN, J.; SANDHU, R.. S.; SHIH, G.; Imaging Properties of 3D Printed Materials: Multi-Energy CT of Filament Polymers J. Digit. Imaging, v.30,n.5, p.572–5, 2017

YANG, L.; GROTTKAU, B.; HE, Z.; YE, C. Three dimensional printing technology and materials for treatment of elbow fractures Int. Orthop., v.41,p. 2381–2387, 2017.

FAROOQI, K. M.; SAEED, O.; ZAIDI, A.; SANZ, J.; NIELSEN, J. C.; HSU, D. T.; JORDE, U. P. 3D Printing to Guide Ventricular Assist Device Placement in Adults With Congenital Heart Disease and Heart Failure. JACC Hear. v.4,n.4, p.301-11, 2016

SAVI, M.; ANDRADE, M. A. B.; POTIENS, M. P. A. Commercial filament testing for use in 3D printed phantoms, Radiat. Phys. Chem., v. 174, p, 108906, 2020

SAVI, M.; ANDRADE, M. A. B.; VILLANI, D., JUNIOR, O. R.; POTIENS, M. D.A. P. A. Development of radiopaque FFF filaments for bone and teeth representation in 3D printed radiological objects, Brazilian J. Radiat. Sci. v.10,n.1,p.01-22,2022.

KAPETANAKIS, I.; FOUNTOS, G.; MICHAIL, C.; VALAIS, I.; KALYVAS, N.; 3D printing X-Ray Quality Control Phantoms. A Low Contrast Paradigm, Journal of Physics: Conference Series,v.931,p. 012026,2017

OLIVEIRA, M.; BARROS, J.C.; UBEDA, C. Development of a 3D printed quality control tool for evaluation of x-ray beam alignment and collimation, Phys. Medica, v. 65, p.29-32, 2019.

PAXTON. N.; SMOLAN, W.; BÖCK, T.; MELCHELS, F.; GROLL, J.; JUNGST, T.; Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability Biofabrication v.9,n.4,p.044107, 2017

OGDEN,K. M.; MORABITO, K. E.; DEPEW, P. K.; 3D printed testing aids for radiographic quality control J. Appl. Clin. Med. Phys. v.20,n.5,p. 127–34,2019

NOONOO. J, B.; SOSU, E.; HASFORD, F.; Three-dimensional image quality test phantom for planar X-ray imaging. S. Afr. J. Sci.v.119,n.7/8, p.1-7,2023

MADAMESILA, J.; MCGEACHY, P.; VILLARREAL, B.J. E.; KHAN, R. Characterizing 3D printing in the fabrication of variable density phantoms for quality assurance of radiotherapy, Phys. Medica, v.32,n1,p.242-247, 2016

GROENEWALD, A.; GROENEWALD, W. A. Development of a universal medical X-ray imaging phantom prototype J. Appl. Clin. Med. Phys. v.17,n.6,p356-365,2016.

SCHOPPHOVEN, S.; CAVAEL, P.; BOCK, K.; FIEBICH, M.; MÄDER, U. Breast phantoms for 2D digital mammography with realistic anatomical structures and attenuation characteristics based on clinical images using 3D printing Phys. Med. Biol.v. 64,n.21,p.215005,2019

HE, Y.; LIU, Y.; DYER, B. A.; BOONE, J. M.; LIU, S.; CHEN, T.; ZHENG, F.; ZHU, Y.; SUN, Y.; RONG, Y.; QIU, J.;3D-printed breast phantom for multi-purpose and multi-modality imaging Quant. Imaging Med. Surg. v.9,n.1,p.63-74 ,634–74,2019.

OLIVEIRA, M.; SAVI, M.; ANDRADE, M.; VILLANI, D.; POTIENS, M. P. A.; STUANI, H; UBEDA, C.; MDLETSHE, S.; Attenuation properties of common 3D printed FFF plastics for mammographic applications Brazilian J. Radiat. Sci.,v. 10.n.1,p.01-17,2022

LEE, M. Y.; HAN, B.; JENKINS, C.; XING, L.; SUH, T. S.; A depth-sensing technique on 3D-printed compensator for total body irradiation patient measurement and treatment planning Med. Phys. v.43,n.11,p.6137,2016

JAVAN, R.; BANSAL, M.; TANGESTANIPOOR, A. A prototype hybrid gypsum-based 3-dimensional printed training model for computed tomography-guided spinal pain management J. Comput. Assist. Tomogr.v.40,n.4,p.626-631,2016

KIM, M. J.; LEE, S. R.; LEE, M. Y.; SOHN, J. W.; YUN, H. G.; CHOI, J. Y.; JEON, S. W.; SUH, T. S. Characterization of 3D printing techniques: Toward patient specific quality assurance spine-shaped phantom for stereotactic body radiation therapy PLoS One, v.12,n.5,p.e0176227,2017

SILBERSTEIN, J. ; SUN, Z. Advances and Applications of Three-Dimensional-Printed Patient-Specific Chest Phantoms in Radiology: A Systematic Review Appl. Sci. v.. 14, p. 5467 14 5467, 2024

Rasband W. ImageJ. Bethesda, Maryland, USA: U.S. National Institutes of Health; 1997e2012. Disponivél em:: http://imagej.nih.gov/ij/.

HUDA, W.; ABRAHAMS, R. B. Radiographic techniques, contrast, and noise in x-ray imaging. Am. J. Roentgenol. v.204,n.2,p. W126–31,2015

BRODER, J. Imaging the Chest: The Chest Radiograph. In Diagnostic Imaging for the Emergency Physician, Expert Consult - Online and Print, p.185–296, 2011.

DUKOV, N.; BLIZNAKOVA, K.; OKKALIDIS, N.; TENEVA, T.; ENCHEVA, E.; BLIZNAKOV, Z.; Thermoplastic 3D printing technology using a single filament for producing realistic patient-derived breast models, Phys. Med. Biol. v.67,n.4,p.045008,2022

GEAR, J. I.; LONG, C.; RUSHFORTH, D.; CHITTENDEN, S. J.; CUMMINGS, C.; FLUX, G. D. Development of patient-specific molecular imaging phantoms using a 3D printer Med. Phys. v. 41,n.8,p.082502,2014.

ZHANG, F.; ZHANG, H.; ZHAO, H.; HE, Z.; SHI, .; HE, Y.; JU, N.;RONG, Y.; QIU, J. Design and fabrication of a personalized anthropomorphic phantom using 3D printing and tissue equivalent materials, Quant. Imaging Med. Surg. v.9,n.1,p.94-100,2019

ANWARI, V.; LAI, A.; URSANI, A.; REGO, K.; KARASFI, B.; SAJJA, S.; PAUL, N. 3D printed CT-based abdominal structure mannequin for enabling research. 3D Print. Med.v.6,n.1,p.1-12 ,2020

PULLEN, M. W.; POOLEY, R. A.; KOFLER, J. M.;VALERO-MORENO, F.; RAMOS-FRESNEDO, A.; DOMINGO, R. A.; PEREZ-VEGA, C.; FOX, W. C.; SANDHU, S. J. S. QUINONES-HINOJOSA, A.; BUCHANAN, I. A. A radiographic analysis of common 3D print materials and assessment of their fidelity within vertebral models Ann. 3D Print. Med.v.8,p.1-7,2022

HUDA, W.; BRAD, A.R. X-ray-based medical imaging and resolution Am. J. Roentgenol. v.204,n.4,p. W393–397,2015

ZHAO, Y.; MORAN, K.; YEWONDWOSSEN, M.; ALLAN, J. CLARKE, S.; RAJARAMAN, M.; WILKE, D.; JOSEPH, P.; ROBAR, J. L. Clinical applications of 3-dimensional printing in radiation therapy Med. Dosim. v.42,n.2,p. 150–155,2017

CEH, J.; YOUD, T.; MASTROVICH, Z.; PETERSON, C.; KHAN, S.; SASSER, T. A.; SANDER, I. M.; DONEY, J.; TURNER, C.; LEEVY, W. M. Bismuth Infusion of ABS Enables Additive Manufacturing of Complex Radiological Phantoms and Shielding Equipment. Sensors (Basel).v. 17,n.3,p.459,2017

JUNG, J.; SONG, S. Y.; YOON, S. M.; KWAK, J.; YOON, K.; CHOI, W.; JEONG, S. Y.; CHOI, E. K.; CHO, B. Verification of accuracy of CyberKnife tumor-tracking radiation therapy using patient-specific lung phantoms Int. J. Radiat. Oncol. Biol. Phys.v. 92,n.4,p.745-753,2015

PALLOTTA, S.; CALUSI, S.; FOGGI, L.; LISCI, R.; MASI, L.; MARRAZZO, L. TALAMONTI, C.; LIVI, L.; SIMONTACCHI, G.ADAM: A breathing phantom for lung SBRT quality assurance Phys. Medica,v.49,p.147-155,2018

LARSSON, J.; LIAO, P.; LUNDIN, P.; KRITE, S.E., SWARTLING, J.; LEWANDER, X. M.; BOOD, J.; ANDERSSON-ENGELS, S. Development of a 3-dimensional tissue lung phantom of a preterm infant for optical measurements of oxygen—Laser-detector position considerations, J. Biophotonics,v.11,n.3,p.1-8,2017

HAZELAAR, C.; VAN EIJNATTEN. M.; DAHELE, M.; WOLFF, J.; FOROUZANFAR, T.; SLOTMAN, B.; VERBAKEL, W. F. A. R. Using 3D printing techniques to create an anthropomorphic thorax phantom for medical imaging purposes Med. Phys. v.45,n.1,p.92-100,2018.

KAIRN, T.; CROWE, S. B.; MARKWELL, T. Use of 3D printed materials as tissue-equivalent phantoms In: Jaffray, D. (eds) World Congress on Medical Physics and Biomedical Engineering, Toronto, Canada. IFMBE Proceedings,v.51,p.728-729,2015

Publicado

04-12-2024

Edição

Seção

Artigos

Como Citar

Estudo da imagem de materiais impressos em 3D para desenvolvimento de fantomas para radiologia diagnóstica. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4, p. e2556, 2024. DOI: 10.15392/2319-0612.2024.2556. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2556. Acesso em: 16 jul. 2025.