Preservando o patrimônio cultural por meio da consolidação com resina de cura por radiação: um estudo de caso de um vaso cerâmico indígena

Autores

DOI:

https://doi.org/10.15392/2319-0612.2024.2560

Palavras-chave:

radiação gama, cobalto-60, polimerização por radiação, consolidação, cerâmica

Resumo

Este artigo apresenta uma investigação sobre a aplicação da radiação gama como método de consolidação de bens culturais, tendo como estudo de caso um vaso cerâmico pertencente ao povo indígena amazônico Asurini do Xingu. Os métodos tradicionais de consolidação de bens culturais com uso da radiação gama envolvem a impregnação do objeto por uma resina radiocurável. Este estudo fez uso de uma resina consolidante aplicada por meio de pincelamento, apenas na parte externa do vaso. A pesquisa incluiu pesagens do objeto antes e depois do processo de consolidação, além da avaliação de possíveis alterações de cor utilizando um colorímetro. Os resultados indicaram a eficácia do método, sem evidências de mudanças negativas no aspecto do bem cultural.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Pablo Antonio Vasquez Salvador, Instituto de Pesquisas Energéticas e Nucleares, IPEN–CNEN/SP

    Bachelor's degree in Chemical Engineering from the Polytechnic School (1999), Master's degree in Sciences from the University of São Paulo (2004), and Ph.D. in Sciences from the University of São Paulo and Washington University in St. Louis (2009). Researcher at the Institute for Energy and Nuclear Research (IPEN). Professor and advisor at the Master's and Ph.D. levels in the Nuclear Technology Graduate Program at the University of São Paulo (USP). Responsible for the research line and application of ionizing radiation for the preservation of cultural heritage. Consultant for the International Atomic Energy Agency (IAEA) on the preservation of cultural heritage using ionizing radiation. Specialist in the use of ionizing radiation in the sterilization and modification of material properties, radio-sterilization, food, polymers, biomaterials, tissues, implants, etc. Qualification of packaging/products and good sterilization practices, validation, and control of the irradiation process. Research, technological development, licensing, and qualification of industrial irradiators and environmental impact. Research and development of industrial dosimetry systems for irradiators. Lead researcher/coordinator of the Cobalt-60 Multipurpose Irradiator at the Radiation Technology Center (CETER/IPEN). Application and studies of ionizing radiation for modifying the physicochemical properties of materials. Experienced in the field of Chemical Engineering, with an emphasis on the application of radioisotopes in the industry for quality control and process optimization: gamma scanning, radioactive tracers, computed tomography, scintillation detectors, and nucleonic control systems.

Referências

SILVA, F. A. As tecnologias e seus significados. Um estudo da cerâmica dos Asurini do Xingu e da cestaria dos Kayapó-Xikrin a partir de uma perspectiva etnoarqueológica. Thesis (Doctorate), Departamento de Antropologia, Universidade de São Paulo (USP), São Paulo, Brazil, p. 1-265, 2000.

SILVA, F. A. Ceramic Production Technology among the Asurini of Xingu: Technical choices, transformations and enchantment. Vibrant: Virtual Brazilian Anthropology, v. 16 (e16601), p. 1-29, 2019.

VIDAL, J.-J. A. Cerâmica dos Suruí de Rondônia e dos Asurini do Xingu: visões diferenciadas de povos indígenas da Amazônia. Thesis (Doctorate), Programa de Pós-Graduação em Artes, Universidade Estadual Paulista (Unesp), São Paulo, Brasil, p. 1-254, 2017.

ADAMO, M.; BACCARO, S.; CEMMI, A. Radiation processing for bio-deteriorated archived materials and consolidation of porous artefacts. Roma, Italy: Agenzia Nazionale per le Nuove Tecnologie, Lʼenergia e lo Sviluppo Economico Sostenibile (RT/2015/5/ENEA), p. 1-48, 2015.

JELEN, E.; WEBER, A.; UNGER, A.; EISBEIN, M. Detox cure for art treasures. Pesticide Outlook, v. 14(1), p. 7–9, 2003.

IAEA. Uses of ionizing radiation for tangible cultural heritage conservation. Vienna, Austria: IAEA, 2017. p. 1-241. ISBN: 78-92-0-103316-1.

TRAN, K. Gamma irradiation for the conservation of cultural heritage artifacts from the 70’s to nowadays in France. In: INAC 2013 - 11th Meeting on Nuclear Applications – XI ENAN Recife, PE, Brazil, November 24-29, 2013. Available at: http://www.aben.com.br/Arquivos/220/220.pdf. Accessed on: 10 Jun. 2024.

PONTA, C.C.; HAVERMANS, J.B.G.A. Trends in disenfecction. In: IAEA. Uses of ionizing radiation for tangible cultural heritage conservation. Vienna, Austria: IAEA, 2017. p. 31-37. ISBN: 78-92-0-103316-1

ALONSO-OLVERA, A.; TRAN, K. Conservation of a pre-Columbian wooden sculpture: a Mexican-French collaboration using gamma radiation technology for consolidation. In: ICOM Committee for conservation: Wet Organic and archaeological materials. Paris: ICOM, v. 2, p. 724-730, 2008.

MOISE, V.; STANCULESCU, I.; VASILCA, S.; CUTRUBINIS, M.; PINCU, E.; OANCEA, P.; RADUCAN, A.; MELTZER, V. Consolidation of very degraded cultural heritage wood artefacts using radiation curing of polyester resins. Radiation Physics and Chemistry, v. 156, p. 314-319, 2019. Available at: https://doi.org/10.1016/j.radphyschem.2018.11.028. Accessed on: 10 Jun. 2024.

VASQUEZ, P. A. S. New trends and applications of ionizing radiation for preservation of cultural heritage tangible materials. In: Second International Conference on Applications of Radiation Science and Technology (ICARST-2022), 22–26 August, Vienna, Austria (Conference presentation), 2022.

IAEA. Radiation Safety of Gamma, Electron and X Ray Irradiation Facilities. IAEA Safety Standards Series No. SS-G-8. Vienna, Austria: IAEA, 2010. p.8-9. ISBN: 978– 92–0–103710–7.

SANTOS, P. S. Estudo e otimização dos parâmetros de processamento por radiação gama em escala industrial considerando fatores operacionais. Dissertation (Master Degree). IPEN, São Paulo, Brazil p. 23-25, 2017. Available at: https://www.teses.usp.br/teses/disponiveis/85/85131/tde-24072017-150743/pt-br.php. Accessed on: 10 Jun. 2024.

SANTOS, P. S.; VASQUEZ, P. A. S. Two-Faces Stationary Irradiation Method and Dosimetric Considerations for Radiation Processing at the Multipurpose Gamma Irradiation Facility/ IPEN-CNEN. In: International Nuclear Atlantic Conference - INAC 2015, São Paulo, Brazil, 2015. Available at: https://inis.iaea.org/search/search.aspx?orig_q=RN:47042507. Accessed on: 10 Jun. 2024.

COQUERET, X.; RANOUX, G. Radiation-Induced Polymerization. In: SUN, Y.; CHMIELEWSKI, A. G. (Eds.). Applications of Ionizing Radiation in Materials Processing. Warszawa, Poland: Institute of Nuclear Chemistry and Technology, 2017, v. 2, p. 375-394. ISBN: 978-83-933935-8-9. Available at: http://www.ichtj.waw.pl/ichtj/publ/monogr/sun2017/sun-vol2.pdf. Accessed on: 10 Jun. 2024.

DE MELO, A. J. L. Avaliação da estrutura de tecidos técnicos como elemento reforçante em compósitos poliméricos sistema poliéster isoftálico. Dissertation (Master Degree). Programa de Pós-graduação em Engenharia Mecânica - PPGEM - Centro de Tecnologia - Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil, p. 47-48, 2013. Available at: https://repositorio.ufrn.br/jspui/handle/123456789/15705. Accessed on: 10 Jun. 2024.

ŠIMŮNKOVÁ, E.; ŠMEJKALOVÁ, Z.; ZELINGER, J. Consolidation of Wood by the Method of Monomer Polymerization in the Object. Studies in Conservation, v. 28, n. 3, p. 133-144, 1983. Available at: https://www.jstor.org/stable/1506116. Accessed on: 10 Jun. 2024.

HARDEBERG, J. Y. Acquisition and Reproduction of Color Images, Colorimetric and Multispectral Approaches. Interface homme-machine [cs.HC]. Télécom ParisTech, p. 1-253, 1999. Available at: https://pastel.hal.science/tel-00005657/document. Accessed on: 10 Jun. 2024.

SAPPI Fine Paper North America. Defining and Communicating Color: The CIELAB System. p. 1-8, 2013. Available at: https://www.sappi.com/node/64479?search_api_views_fulltext=cielab. Accessed on: 10 Jun. 2024.

INTERNATIONAL Commission on Illumination, International Commission on Illumination Technical Committee 3-22, Museum Lighting. Control of damage to museum objects by optical radiation. Vienna, Austria: Commission International de l'Éclairage (CIE 157:2004), 2004. ISBN: 978 3 901906 27 5.

SHARMA, G.; WU, W.; DALAL, E. N. The CIEDE2000 Color-Difference Formula: Implementation Notes, Supplementary Test Data, and Mathematical Observations. Color Research & Application, v. 30 (1), 2005. Available at: https://doi.org/10.1002/col.20070. Accessed on: 10 Jun. 2024.

MARUŠIĆ, K.; PUCIĆ, I.; DESNICA, V. Ornaments in radiation treatment of cultural heritage: Color and UV–vis spectral changes in irradiated nacres. Radiation Physics and Chemistry. v. 124, 2016. Available at: http://dx.doi.org/10.1016/j.radphyschem.2015.11.028. Accessed on: 10 Jun. 2024.

SILVA, F. A. Tecnologias em transformação: inovação e (re)produção dos objetos entre os Asurini do Xingu. Boletim do Museu Paraense Emilio Goeldi. v.8(3), p. 729-744, 2013. Available at: https://www.scielo.br/j/bgoeldi/a/Kfn5yk8Q6V7BVcXpXX7DmdP/?lang=pt. Accessed on: 10 Jun. 2024.

Publicado

11-12-2024

Como Citar

Preservando o patrimônio cultural por meio da consolidação com resina de cura por radiação: um estudo de caso de um vaso cerâmico indígena. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4A (Suppl.), p. e2560, 2024. DOI: 10.15392/2319-0612.2024.2560. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2560. Acesso em: 17 jul. 2025.