Cálculos Acoplados em Regime Permanente (Serpent-GeN-FOAM) Aplicados ao Molten Salt Fast Reactor (MSFR)

Autores

  • Tiago Augusto Santiago Vieira Centro de Desenvolvimento da Tecnologia Nuclear image/svg+xml
  • Geovana Loren Cruz Centro de Desenvolvimento da Tecnologia Nuclear image/svg+xml
  • Yasmim Martins Carvalho Centro de Desenvolvimento da Tecnologia Nuclear image/svg+xml
  • Geovana Carvalho Silva Centro de Desenvolvimento da Tecnologia Nuclear image/svg+xml
  • Keferson Almeida Carvalho Centro de Desenvolvimento da Tecnologia Nuclear image/svg+xml
  • Rebeca Cabral Gonçalves Centro de Desenvolvimento da Tecnologia Nuclear image/svg+xml
  • Vitor Vasconcelos Araújo Silva Centro de Desenvolvimento da Tecnologia Nuclear image/svg+xml
  • Graiciany Paula Barros Centro de Desenvolvimento da Tecnologia Nuclear image/svg+xml
  • Andre Augusto Campagnole dos Santos Centro de Desenvolvimento da Tecnologia Nuclear image/svg+xml

DOI:

https://doi.org/10.15392/2319-0612.2024.2643

Palavras-chave:

Molten Salt Fast Reactor, Monte Carlo, CFD, GCI extendido, Combustível a base de tório

Resumo

O Molten Salt Fast Reactor (MSFR) representa uma inovação significativa dentro dos sistemas de reatores nucleares de quarta geração, distinguindo-se pelo uso de sal fundido como combustível e refrigerante. Este estudo apresenta uma metodologia para realizar cálculos acoplados em estado estacionário de neutrônica e termo-hidráulica (TH) para o Molten Salt Fast Reactor (MSFR) utilizando técnicas de Monte Carlo (MC) e Fluido Dinâmica Computacional (CFD). O reator foi alimentado com sal combustível utilizando LiF como sal base, tório (232Th) como material fértil e 233U como material físsil. O cálculo de incertezas foi realizado utilizando Grid Convergence Index (GCI). O método GCI foi aplicado para quantificar incertezas nos perfis de temperatura, velocidade e densidade de potência. Os resultados destacam a importância da convergência acoplada, particularmente para o campo de densidade de potência, e revelam recirculação lateral e formação de pontos quentes no núcleo do reator. As técnicas de redução de ruído aplicadas às simulações MC suavizaram efetivamente os perfis de densidade de potência, reduzindo a incerteza estatística.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

[1] Kelly, J. E. Generation IV International Forum: A decade of progress through international cooperation. Progress in Nuclear Energy, Elsevier, v. 77, p. 240-246, 2014.

[2] Brovchenko, M. et al. Neutronic benchmark of the molten salt fast reactor in the frame of the EVOL and MARS collaborative projects. EPJ N-Nuclear Sciences & Technologies, Springer, v. 5, p. 2, 2019.

[3] Siemer, D. D. Why the molten salt fast reactor (MSFR) is the “best” Gen IV reactor. Energy Science & Engineering, Wiley Online Library, v. 3, n. 2, p. 83-97, 2015.

[4] Rouch, H., Geoffroy, O., Rubiolo, P., Laureau, A., Brovchenko, M., Heuer, D., & Merle-Lucotte, E. Preliminary thermal-hydraulic core design of the Molten Salt Fast Reactor (MSFR). Annals of Nuclear Energy, Elsevier, v. 64, p. 449-456, 2014.

[5] Fiorina, C., Aufiero, M., Cammi, A., Franceschini, F., Krepel, J., Luzzi, L., Mikityuk, K., & Ricotti, M. E. Investigation of the MSFR core physics and fuel cycle characteristics. Progress in Nuclear Energy, Elsevier, v. 68, p. 153-168, 2013.

[6] Aufiero, M. Development of advanced simulation tools for circulating fuel nuclear reactors. Politecnico di Milano, Milan & Italy, 2014.

[7] Vasconcelos, V., Santos, A., Campolina, D., Theler, G., & Pereira, C. Coupled unstructured fine-mesh neutronics and thermal-hydraulics methodology using open software: A proof-of-concept. Annals of Nuclear Energy, Elsevier, v. 115, p. 173-185, 2018.

[8] Vieira, T. et al. Study of a fine-mesh 1:1 Computational Fluid Dynamics-Monte Carlo neutron transport coupling method with discretization uncertainty estimation. Annals of Nuclear Energy, Elsevier, v. 148, p. 107-118, 2020.

[9] Leppänen, J., Valtavirta, V., Viitanen, T., & Aufiero, M. Unstructured Mesh Based Multi-Physics Interface for CFD Code Coupling in the Serpent 2 Monte Carlo Code. In Proceedings of the Conference, 2014.

[10] Gill, D. F. et al. Numerical Methods in Coupled Monte Carlo and ThermalHydraulic Calculations. Nuclear Science and Engineering, Taylor & Francis, v. 185, p. 194-205, 2017.

[11] Wang, J. et al. Review on neutronic/thermal-hydraulic coupling simulation methods for nuclear reactor analysis. Annals of Nuclear Energy, Elsevier, v. 137, p. 107-165, 2020.

[12] Leppänen, J. Development of a new Monte Carlo reactor Physics Code. Helsinki University of Technology, Espoo & Finland, 2007.

[13] Fiorina, C. et al. GeN-Foam: a novel OpenFOAM-based multi-physics solver for 2D/3D transient analysis of nuclear reactors. Nuclear Engineering and Design, Elsevier, v. 294, p. 24-37, 2015.

[14] Geuzaine, C., & Remacle, J.-F. Gmsh: A 3-D Finite Element Mesh Generator with Built-in Pre- and Post-Processing Facilities. International Journal for Numerical Methods in Engineering, Wiley, v. 79, p. 1309-1331, 2009.

[15] Giudicelli, G., Permann, C., Gaston, D., Abou-Jaoude, A., & Feng, B. The Virtual Test Bed (VTB) repository: a library of multiphysics reference reactor models using NEAMS tools. In Proceedings of the International Conference on Physics of Reactors - PHYSOR 2022, 2022.

[16] Di Ronco, A., Giacobbo, F., Lomonaco, G., Lorenzi, S., Wang, X., & Cammi, A. Preliminary analysis and design of the energy conversion system for the Molten Salt Fast Reactor. Sustainability, Multidisciplinary Digital Publishing Institute, v. 12, n. 24, p. 10497, 2020.

[17] Aufiero, M., Cammi, A., Geoffroy, O., Losa, M., Luzzi, L., Ricotti, M. E., & Rouch, H. Development of an OpenFOAM model for the Molten Salt Fast Reactor transient analysis. Chemical Engineering Science, Elsevier, v. 111, p. 390-401, 2014.

[18] Laureau, A., Heuer, D., Merle-Lucotte, E., Rubiolo, P. R., Allibert, M., & Aufiero, M. Transient coupled calculations of the Molten Salt Fast Reactor using the transient fission matrix approach. Nuclear Engineering and Design, Elsevier, v. 316, p. 112-124, 2017.

[19] Tiberga, M. Development of a high-fidelity multi-physics simulation tool for liquid-fuel fast nuclear reactors. Ph.D. thesis, TU Delft University, Energy and Nuclear Engineering, 2020.

[20] Gonzalez Gonzaga De Oliveira, R. Improved methodology for analysis and design of Molten Salt Reactors. Ph.D. thesis, EPFL, 2021.

[21] OpenFOAM - the Open Source CFD Toolbox: User Guide, Version 2212, Jul. 2022.

[22] Dufëk, J., & Hoogenboom, J. Description of a stable scheme for steady-state coupled Monte Carlo-thermal-hydraulic calculations. Annals of Nuclear Energy, Elsevier, v. 68, p. 1-3, 2014.

[23] Vieira, T. A. S., Ribeiro, F. R. C., Carvalho, Y. M., Silva, V. V. A., de Paula Barros, G., & dos Santos, A. A. C. Investigation of discretization uncertainty in Monte Carlo neutron transport simulations of the Molten Salt Fast Reactor (MSFR). Brazilian Journal of Radiation Sciences, v. 11, n. 4, p. 01-27, 2023.

[24] Chadwick, M. B. et al. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data. Nuclear Data Sheets, Elsevier, v. 112, n. 12, p. 2887-2996, 2011.

[25] Roache, P. J. Fundamentals of Verification and Validation. Hermosa Publishers, Socorro, NM, 2009.

[26] Celik, I., Ghia, U., Roache, P. J., Freitas, C., Coloman, H., & Raad, P. Procedure of Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. Journal of Fluids Engineering, ASME, v. 130, p. 078001, 2008.

[27] Matozinhos, C., & Campagnole dos Santos, A. Two-phase CFD simulation of research reactor siphon breakers: A verification, validation and applicability study. Nuclear Engineering and Design, Elsevier, v. 326, 2018.

[28] Aufiero, M. Development of advanced simulation tools for circulating fuel nuclear reactors. Ph.D. thesis, Politecnico di Milano, 2014.

[29] Allibert, M., Aufiero, M., Brovchenko, M., Delpech, S., Ghetta, V., Heuer, D., Laureau, A., & Merle-Lucotte, E. Molten salt fast reactors. In Handbook of Generation IV Nuclear Reactors, Elsevier, p. 157-188, 2016.

[30] Alsayyari, F., Tiberga, M., Perkó, Z., Kloosterman, J. L., & Lathouwers, D. Analysis of the Molten Salt Fast Reactor using reduced-order models. Progress in Nuclear Energy, Elsevier, v. 140, p. 103909, 2021.

[31] Wright, R. N., & Sham, T.-L. Status of metallic structural materials for molten salt reactors. Idaho National Lab (INL), Idaho Falls, ID (United States); Argonne National Lab, 2018.

[32] Abou-Jaoude, A., Harper, S., Giudicelli, G., Balestra, P., Schunert, S., Martin, N., Lindsay, A., Tano, M., & Freile, R. A workflow leveraging MOOSE transient multiphysics simulations to evaluate the impact of thermophysical property uncertainties on molten-salt reactors. Annals of Nuclear Energy, Elsevier, v. 163, p. 108546, 2021.

[33] German, P., Tano, M., Fiorina, C., & Ragusa, J. C. GeN-ROM—An OpenFOAM-based multiphysics reduced-order modeling framework for the analysis of Molten Salt Reactors. Progress in Nuclear Energy, Elsevier, v. 146, p. 104148, 2022.

Downloads

Publicado

23-04-2025

Como Citar

Cálculos Acoplados em Regime Permanente (Serpent-GeN-FOAM) Aplicados ao Molten Salt Fast Reactor (MSFR). Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4B (Suppl.), p. 2643, 2025. DOI: 10.15392/2319-0612.2024.2643. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2643. Acesso em: 16 jul. 2025.