Desenvolvimento de Esferoides em Co- Cultura de Tumor Prostático com Fibroblastos Humanos, Usando a Técnica de Gota Suspensa com Inversão de Placa para Análise de Irradiação GammaCell 220 com Co-60

Autores

DOI:

https://doi.org/10.15392/2319-0612.2024.2682

Palavras-chave:

Gota Suspensa, câncer de próstata, irradiador GammaCell 220 com Co-60

Resumo

O desenvolvimento de esferoides tumorais em co-cultura com fibroblastos humanos é uma abordagem inovadora para modelar o microambiente do câncer prostático e avaliar os efeitos da radiação. Neste estudo, utilizamos a técnica de "hanging drop" combinada com a inversão de placas para formar esferoides tridimensionais de células tumorais prostáticas (linha LNCAP) co-cultivadas com fibroblastos humanos. Esta abordagem visa criar um modelo mais representativo do ambiente tumoral in vivo, permitindo uma análise detalhada das interações entre células tumorais e fibroblastos em condições 3D. Os esferoides formados foram expostos a radiação gama utilizando um irradiador GammaCell 220 com Co-60, com o objetivo de investigar os efeitos da radiação nas células fibroblásticas e tumorais. A radiação gama é conhecida por induzir morte celular, e este estudo analisa como esses danos influenciam a morfologia no microambiente dos esferoides.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

[1] BOLTE, S.; CORDELIÈRES, F. P. A guided tour into subcellular colocalization analysis in light microscopy. Journal of Microscopy, v. 224, p. 213–232, 2007. DOI: https://doi.org/10.1111/j.1365-2818.2006.01706.x

[2] CHAICHAROENAUDOMRUNG, N.; KUNHORM, P.; NOISA, P. Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World Journal of Stem Cells, v. 11, n. 12, p. 1065–1076, 2019. DOI: https://doi.org/10.4252/wjsc.v11.i12.1065

[3] EILENBERGER, C. et al. Effect of spheroidal age on sorafenib diffusivity and toxicity in a 3D HepG2 spheroid model. Scientific Reports, v. 9, n. 1, p. 1–10, 2019. DOI: https://doi.org/10.1038/s41598-019-41273-3

[4] HORMAN, S. R. et al. 3D high-content analysis of spheroids. Genetic Engineering & Biotechnology News, v. 33, n. 16, p. 18–19, 2013. DOI: https://doi.org/10.1089/gen.33.16.08

[5] IVANOV, D. P. et al. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres. PLOS ONE, v. 9, n. 8, p. e103817, 2014. DOI: https://doi.org/10.1371/journal.pone.0103817

[6] IVOSEV, G.; BURTON, L.; BONNER, R. F. Dimensionality reduction and visualization in principal component analysis. Analytical Chemistry, v. 80, n. 13, p. 4933–4944, 2008. DOI: https://doi.org/10.1021/ac800110w

[7] JENSEN, C.; TENG, Y. Is it time to start transitioning from 2D to 3D cell culture? Frontiers in Molecular Biosciences, v. 7, p. 33, 2020. DOI: https://doi.org/10.3389/fmolb.2020.00033

[8] JOHNSON, R. J.; CARRINGTON, B. M. Pelvic radiation disease. Clinical Radiology, v. 45, n. 1, p. 4–10, 1992. DOI: https://doi.org/10.1016/S0009-9260(05)81458-8

[9] MEHTA, G. et al. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. Journal of Controlled Release, v. 164, n. 2, p. 192–204, 2012. DOI: https://doi.org/10.1016/j.jconrel.2012.04.045

[10] MITTLER, F. et al. High-content monitoring of drug effects in a 3D spheroid model. Frontiers in Oncology, v. 7, p. 293, 2017. DOI: https://doi.org/10.3389/fonc.2017.00293

[11] MURÓYA, Y. et al. High-LET ion radiolysis of water: visualization of the formation and evolution of ion tracks and relevance to the radiation-induced bystander effect. Radiation Research, v. 165, n. 4, p. 485–491, 2006. DOI: https://doi.org/10.1667/RR3540.1

[12] PANGANIBAN, R. A. M.; SNOW, A. L.; DAY, R. M. Mechanisms of radiation toxicity in transformed and non-transformed cells. International Journal of Molecular Sciences, v. 14, n. 8, p. 15931–15959, 2013. DOI: https://doi.org/10.3390/ijms140815931

[13] RUA, Y. et al. Correlation between cellular uptake and cytotoxicity of polystyrene micro/nanoplastics in HeLa cells: a size-dependent matter. PLOS ONE, v. 18, n. 8, p. e0289473, 2023. DOI: https://doi.org/10.1371/journal.pone.0289473

[14] SART, S. et al. Multiscale cytometry and regulation of 3D cell cultures on a chip. Nature Communications, v. 8, p. 475, 2017. DOI: https://doi.org/10.1038/s41467-017-00475-x

[15] SGOUROS, G.; YANG, W.-H.; ENMON, R. M. Spheroids of prostate tumor cell lines. In: Spheroids of Prostate Tumor Cell Lines. New Jersey: Humana Press, 2003. p. 79–90. DOI: https://doi.org/10.1385/1-59259-372-0:79

[16] ZANONI, M. et al. Anticancer drug discovery using multicellular tumor spheroid models. Expert Opinion on Drug Discovery, v. 14, n. 3, p. 289–303, 2019. DOI: https://doi.org/10.1080/17460441.2019.1570129

Downloads

Publicado

23-01-2026