Study of volume fractions on biphasic stratified regime using gamma ray
DOI:
https://doi.org/10.15392/bjrs.v7i2B.429Palavras-chave:
volume fraction, gamma radiation, code MCNP-X.Resumo
In the oil industries, interconnected pipelines are used to carry large quantities of petroleum and its byproducts. This modal has an advantage because they are more economical, eliminate a need for stocks and, in addition, great safety in operation minimizing a possibility of loss or theft when transported another way. In many cases, especially in the petrochemical industry, the same pipeline is used to carry more than one type of product. They are called poliduct. In the operation of a poliduct there is a sequence of products to be transported and during the exchange of the product, there are still fractions of the previous product and this generates contaminations. It is therefore important to identify precisely this region in order to reduce the costs of reprocessing and treatment of discarded products. In this way, this work presents a methodology to evaluate the sensitivity of the gamma densitometry technique in a study of the calculation of volume fractions in biphasic systems, submitted to the stratified flow regime. Using computational simulations using the Monte Carlo Method with the MCNP-X code, measurement geometry was proposed that presented a higher sensitivity for the calculation of volume fractions. The relevant technical data to perform a simulation of the scintillator detectors were based on information obtained from the gammagraphy technique. The study had a theoretical validation through analytical equations, and the results show that it is possible to identify volume fractions equivalent to 3%.
Downloads
Referências
Jones, W.M.C., Paddock, K.F., Transport by pipeline. In: Hobson, G.D., editor, Modern petro-leum technology. Wiley, (1982).
Techo, R.; Holbrook, D.L., Computer scheduling the world’s biggest product pipeline. Pipeline Gas Journal, 4:27, (1974).
AbouelwafaM.S.A. e Kendall E.J.M, “The measurement of component ratios in multiphase sys-tems using gamma-ray attenuation”, Journal of Physics E: Scientific Instruments,13, pp. 341-345 (1980).
Abdulrahman A.A., ShokirE.M., “Artificial neural networks modeling for hydrocarbon gas vis-cosity and density estimation”. Journal of King Saud University – Engineering Sciences, 23, pp. 123-129, (2011).
C. M. Salgado, Cláudio M. N. A. Pereira, Luis E. B. Brandão e W.L. Salgado. Salinity indepen-dent volume fraction prediction in annular and stratified (water-gas-oil) multiphase flows us-ing artificial neural networks.Progress in Nuclear Energy 76 pp. 17-23 (2014).
Salgado C.M., BrandaoL.E.B., Conti C.C. e Salgado W.L., “Density prediction for petroleum and derivatives by gamma-ray attenuation and artificial neural networks”, Applied Radiationand Isotopes, 116 (2016) pp. 143–149.
Mi, Y., Ishii, M. e Tsoukalas, L.H., “Vertical two-phase flow identification using advanced in-strumentation and neural networks”. Nuclear Engineering and Design, 184, pp.409-420 (1998).
Salgado C.M., Brandão L.E.B., Nascimento C.M.N.A., Schirru R., Ramos R. e Silva A.X., “Pre-diction of volume fractions in three-phase flows using nuclear technique and artificial neural network”, Applied Radiation and Isotopes, 67, pp. 1812-1818 (2009).
Salgado C.M., Pereira C.M.N.A., Schirru R. e Brandão L.E.B., “Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks”. Progress in Nuclear Energy, Vol. 52(6), pp. 555-562 (2010).
Khorsandi M. e Feghhi S.A.H., “Design and construction of a prototype gamma-ray densitome-ter for petroleum products monitoring applications”. Measurement, 44, pp. 1512-1515, (2011).
Salgado W. L., Silva A. X. A. e Salgado C. M., “Photopeak Efficiency Responde Function of an Underwater Gamma-ray NaI(Tl) Detector using MCNP-X”In: International Nuclear Atlantic Conference, 2015, São Paulo. Meeting on Nuclear Applications (XII ENAN), 2015.
Berger, M.J., Seltzer, S.M., "Response functions for sodium iodide scintillation detectors". Nuc-lear Instruments and Methods 104, pp.317-332 (1972).
C.M. Salgado, L.E.B. Brandão, C.M.N.A. Pereira, Robson Ramos, R. Schirru e Ademir X. Sil-va, "Validationof a NaI(Tl) detector’smodeldevelopedwith MCNP-X code". Progress in Nuc-lear Energy 59, pp.19-25 (2012).
K. SaitoeS. Moriuchi, "Monte Carlo Calculation of accurate response functions for a NaI(Tl) detector for gamma rays", Nuclear Instruments and Methods 185 pp.299-308 (1981).
Hu-XiaShi, Bo-Xian Chen, Ti-Zhu Li e D.I. Yun. "Precise Monte Carlo simulation of gamma-ray response functions for an NaI(Tl) detector", Applied Radiation and Isotopes 57, pp. 517-524 (2002).
Orion, I., Wilopolski, L., "Limitations in the PHOTON Monte Carlo gamma transport code". Nuclear Instruments and Meth.in Physics Research A 480, pp.729-733 (2002).
D. B. Pelowitz, MCNP-X TM User’s Manual, Version 2.5.0. LA-CP-05-0369, Los AlamosNa-tionalLaboratory (2005).
J.C. Vitorelli, A.X. Silva, V.R. Crispim, E. S. da Fonseca, W.W. Pereira, "Monte Carlo simula-tion of response function for a NaI(Tl) detector for gamma-rays from 241Am/Be source", Appl. Radiat. Isot.62, pp.619-622 (2005).
C. M.Salgado, L. E. B. Brandão, R. Schirru, C. M. N. A.Pereira, R.Ramos e A. X.Silva, "Mode-lagem de detector NaI(Tl) usando MCNP-X". XI Encontro de ModelagemComputacional, n 0189, Volta Redonda, RJ (2008).
I.O.B. Ewa, D. Bodizs, S.Z. Czifrus e Z.S. Molnar, "Monte Carlo determination of full energy peak efficiency for a HPGe detector", Nuclear Instruments and methods in Physics Research A 479, pp.618-630 (2001).
Downloads
Publicado
Edição
Seção
Licença
Direitos autorais (c) 2019 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/