A THIRD GENERATION TOMOGRAPHY SYSTEM WITH FIFTEEN DETECTORS SIMULATED BY MONTE CARLO METHOD
DOI:
https://doi.org/10.15392/bjrs.v7i2A.708Resumo
This paper describes the Monte Carlo simulation, using MCNP4C, of a multichannel third generation tomography system containing a two radioactive sources 192I (316.5 – 468 KeV) and 137Cs (662 KeV), and a set of fifteen NaI(Tl) detectors, with dimensions of 1 inch diameter and 2 inches thick, in fan beam geometry, positioned diametrically opposite. Each detector moves 10 steps of 0,24o, totalizing 150 virtual detectors per projection, and then the system rotate 2 degrees. The Monte Carlo simulation was performed to evaluate the viability of this configuration. For this, a multiphase phantom containing polymethyl methacralate (PMMA ((r @ 1.19 g/cm3)), iron (r @ 7.874 g/cm3), aluminum (r @ 2.6989 g/cm3) and air (r @ 1.20479E-03 g/cm3) was simulated. The simulated number of histories was 1.1E+09 per projection and the tally used were the F8, which gives the pulse height of each detector. The data obtained by the simulation was used to reconstruct the simulated phantom using the statistical iterative Maximum Likelihood Estimation Method Technique (ML-EM) algorithm. Each detector provides a gamma spectrum of the sources, and a pulse height analyzer (PHA) of 10% on the 316.5 KeV and 662 KeV photopeaks was performed. This technique provides two reconstructed images of the simulated phantom. The reconstructed images provided high spatial resolution, and it is supposed that the temporal resolution (spending time for one complete revolution) is about 2.5 hours.
Downloads
Referências
JOHANSEN G.A, HAMPEL U., HJERTAKER B. T, Flow imaging by high speed transmission tomography. Applied Radiation and Isotopes, v. 68, p. 518–524, 2010
FALAHI F. Al., Al-DAHHAN M., Experimental investigation of the pebble bed structure by using gamma ray tomography, Nuclear Engineering and Design, v. 310, p.- 231-246, 2016.
IAEA-TECDOC-1589, Industrial Process Gamma Tomography, International Atomic Energy Agency, Vienna, 2008.
MESQUITA C.H., VASQUEZ P.A.S., CALVO W.A.P., CARVALHO D.V.S., MARCATO L.A., MARTINS J.F.T., HAMADA M.M. Multi-source third generation computed tomography for industrial multiphase flows applications. In: IEEE Nuclear Science Symposium, New York, 2011, p. 1294-1302.
MESQUITA C.H., DANTAS C.C., COSTA F.E., CARVALHO D.V.S., MADI FILHO T., VASQUEZ P.A.S., HAMADA M.M. Development of a Fourth Generation Industrial Tomography for Multiphase Systems Analysis. In: IEEE Nuclear Science Symposium, New York, 2011, p. 19-23.
Disponível em <https://physics.nist.gov/cgi-bin/Star/compos.pl?matno=104>, acesso em 10 dez 2018.
MESQUITA, C.H., VELO, A.F., CARVALHO, D.V.S., MARTINS, J.F.T., HAMADA, M.M. Industrial tomography using three different gamma rays. Flow Measurement and Instrumentation, v. 47, p. 1-9, 2016.
Disponível em <https://www.inl.gov/>. Acesso em 10 dez 2018.
BENAC J. Alternating minimization algorithms for X-ray computed tomography: multigrid acceleration and dual energy application, Tese (Ph.D), Washington University, St. Louis, 2005.
SALGADO, C.M., BRANDÃO L.E.B., SCHIRRU, R., PEREIRA, C.M.N.A. CONTI C.C. Validation of a NaI(Tl) detector's model developed with MCNP-X code. Progress in Nuclear Energy, v. 59, p. 19-25, 2012.
JEHOUANI, A., ICHAOUI, R., BOULKNEIR, M. Study of the NaI(Tl) efficiency by Monte-Carlo method. Applied Radiation and Isotopes, v. 53, p. 887-891, 2000.
VELO A.F, HAMADA M.M., CARVALHO D.V.S., MARTINS J.F.T, MESQUITA C.H., A portable tomography system with seventy detectors and five gamma-ray sources in fan beam geometry simulated by Monte Carlo method. Flow Measurement and Instrumentation, v. 53, p. 89-94, 2017.
HADIZADEH YAZDI M.H., MOWLAVI A.A., THOMPSON M.N., MIRI HAKIMABAD H. Proper shielding for Na(Tl) detectors in combined neutron-gamma fields using MCNP. Nuclear Instruments and Methods in Physics, v. 522, p. 447-454, 2004.
PELOWITZ, D.B. MCNP-X TM, User’s Manual, Version 2.5.0, LA-CP-05-0369. Los Alamos National Laboratory (2005).
MAAD R., HJERTAKER B.T., JOHANSEN G.A, OLSEN Ø. Dynamic characterization of a high speed gamma-ray tomography. Flow Measurement and Instrumentation, v. 21, p. 538-545, 2010.
Downloads
Publicado
Edição
Seção
Categorias
Licença
Direitos autorais (c) 2021 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/