Solution for the Multigroup Neutron Space Kinetics Equations by Source Iterative Method
DOI:
https://doi.org/10.15392/bjrs.v9i2A.731Palavras-chave:
Neutron Diffusion Equation, Source Iterative Method, Laplace Transform, Stehfest Algorithm, Polinomial Interpola-tion.Resumo
In this work, we used a modified Picard’s method to solve the Multigroup Neutron Space Kinetics Equations (MNSKE) in Cartesian geometry. The method consists in assuming an initial guess for the neutron flux and using it to calculate a fictitious source term in the MNSKE. A new source term is calculated applying its solution, and so on, iteratively, until a stop criterion is satisfied. For the solution of the fast and thermal neutron fluxes equations, the Laplace Transform technique is used in time variable resulting in a first order linear differential matrix equation, which are solved by classical methods in the literature. After each iteration, the scalar neutron flux and the delayed neutron precursors are reconstructed by polynomial interpolation. We obtain the fluxes and precursors through Numerical Inverse Laplace Transform by Stehfest method. We present numerical simulations and comparisons with available results in literature.
Downloads
Referências
WILLERT, J.; TAITANO, T; KNOLL, D. Leveraging anderson acceleration for improved conver-gence of iterative solutions to transport systems. Journal of Computational Physics, v. 273, p. 122-132, 2014.
ADAMS, M.; LARSEN, E. Fast iterative methods for discrete ordinates particle transport calcula-tions. Progress in Nuclear Energy, v. 40, p. 3-159, 2002.
DANIELLA, M. Métodos de Aceleração para a Solução da Equação de Transporte. 2017. Tese de Doutorado - PPGMAP/UFRGS, Porto Alegre/RS.
ZANETTE, R. Solução da Equação de Difusão de Nêutrons Multigrupo Multirregião Estacionária em Geometria Cartesiana pelo Método da Potência via Fronteiras Fictícias. 2017. Dissertação de Mestrado - PPGMAT/UFPEL, Pelotas/RS.
NAHLA, A.; et al. Numerical Techniques for the Neutron Diffusion Equations in the Nuclear Reac-tors. Adv. Studies Theor. Physics, v. 6, p.649-664, 2012.
CEOLIN, C.; et al. On the analytical Solution of the multi group neutron diffusion kinetic equation in a multlayered slab. International Nuclear Atlantic Conference, 2011, Belo Horizonte, MG, Bra-zil, October 24 to October 28 (2011).
CORNO, S. et al. Analytical approach to the neutron kinetics of the non-homogeneous reactor. Progress in Nuclear Energy, v. 50, p. 847-865, 2008.
HASSANZADEH, H.; POOLDADI-DARVISH, M. Comparison of different numerical Laplace inversion methods for engineering applications. Applied mathematics and computation, v. 189, p. 1966-1981, 2007.
Downloads
Publicado
Edição
Seção
Licença
Direitos autorais (c) 2021 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/