The effect of gamma radiation on the structure of graphene oxide and graphene oxide functionalized with amino-PEG
DOI:
https://doi.org/10.15392/bjrs.v7i3.837Palavras-chave:
Functionalization, nanocomposite, graphene oxide.Resumo
ABSTRACT
Covalent functionalization of graphene oxide (GO) with polyethylene glycol (PEG) has been widely used in drug delivery systems. This nanocomposite exhibits excellent stability in the presence of high concentrations of salts and proteins and shows low toxicity compared to its raw form. However, must be sterilized prior to use in medical devices, and the gamma irradiation shows a promising option for this purpose. Sterilization by ionizing energy through gamma rays, generated by Cobalt-60 self-disintegration, consists in exposing the materials to short electromagnetic waves. The irradiation process provides substantial advantages when compared to thermal and chemical processes such as more precise control of the process, lower energy consumption, and less environmental pollution. In this work the effects of gamma radiation on GO and GO functionalized com Amino-PEG (GO-PEG-NH2) irradiated with doses (15, 25, 35 and 50 kGy) that have been used to sterilize medical devices and at rate dose 7.3 kGy.h-1 were evaluated. The analyses were performed by Fourier-transform infrared spectroscopy (FT-IR) and Raman spectroscopy. The results showed that gamma radiation up to 50 kGy did not cause any defects on the nanomaterials.
Downloads
Referências
MEHL H.; MATOS F. C.; NEIVA E. G.; DOMINGUES S. H.; ZARBIN A. J. G. Efeito da variação de parâmetros reacionais na preparação de grafeno via oxidação e redução do grafite. Química Nova, v.37, n°10, pp.1639-1645, (2014).
GULZAR A.; YANG P.; HEI F.; XU J.; YANG D.; XU L.; JAN M. O. Bioapplications of graphene constructed functional nanomaterials, Chemico-Biological Interactions, v.262, pp.69-89, (2017).
NISHIDA E.; TAKITA H.; KANAYAMA I.; TSUJI M.; AKASAKA T.; SUGAYA T.; SAKAGAMI R.; KAWANAMI M. Graphene oxide coating facilitates the bioactivity of scaffold material for tissue engineering. Japanese Journal of Applied Physics, v.53, 13 May. (2014).
ZHANG Y.; NAYAK T. R.; HONG H.; CAI W. Graphene: a versatile nanoplatforms for biomedical applications. Nanoscale, v.4, pp.3833-3842, (2012).
KRISHNA K. V.; MÉNARD M.; VERMA S.; BIANCO A. Graphene-based nanomaterials for nanobiotechnology and biomedical applications. Nanomedicine, v.8, pp.1669–1688, (2013).
XU Z.;WANG S.; LI Y.; WANG M.; HUANG P. Shi. Covalent functionalization of graphene oxide with biocompatible poly (ethylene glycol) for delivery of paclitaxel. Applied materials e interfaces, v.6, pp.17268-17276, (2014).
FENG L.; LIU Z.; Graphene in biomedicine: opportunities and challenges. Nanomedicine, v.6, pp. 317-324, (2011).
CLELAND M. L.; Industrial Applications of Electron Accelerators, Ion beam applications. IBA Technology Group 151, New York. (2005).
HUMMERS W. S.; OFFERMAN R. E.; Preparation of graphitic oxide. J. Am. Chem. Soc., v.80, pp.1339–1339, (1958).
MUTTER M.; Soluble polymers in organic synthesis: I. Preparation of polymer reagents using polyethylene glycol with terminal amino groups as polymeric component. Tetrahedron Letters, Germany, n.31, pp.2839-2842 (1978).
YANG K.; FENG L.; HONG H.; CAI W.; LIU Z.; Preparation and functionalization of graphene nanocomposites for biomedical applications. Nature Protocols, v.8, n.12, (2013).
COLLINS C. J. Reactions of primary aliphatic amines with Nitrous acid. Advan. Chem. Phys, v.4, (1970).
AWASTHI G.; KUMAR A.; SANGUI A.; SINGH S. S. Biochemical Laboratory Manual, International E-Publication, pp. 30-31, (2013).
ZHAO J.; LIU L.; LI F.; Graphene Oxide: Physics and Applications. London: Springer, 161 p. (2015).
GEORGAKILAS V. Functionalization of graphene. Wiley-VCH, p.426, (2014).
KING A. A. K.; DAVIES B. R.; NOORBEHESHT N.; NEWMAN P.; CHURCH T. L.; HARRIS A. T.; RAZAL J. M.; MINETT A. I. Characterization of Graphene oxide and its derivatives. Scientific Reports, (2016).
CANÇADO L. G.; JORIO A.; FERREIRA E. H. M.; STAVALE F.; ACHETE C. A.; CAPAZ R. B.; MOUTINHO M. V. O.; LOMBARDO A.; KULMALA T.; FERRARI A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies, v.2, (2011).
Downloads
Publicado
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/