Aplicabilidade da Lei do Inverso do Quadrado da Dis-tância em radiologia convencional e mamografia
DOI:
https://doi.org/10.15392/bjrs.v3i1A.91Palavras-chave:
radiology, mammography, dosimetryResumo
The Inverse Square Law (ISL) is a mathematical rule used to adjust the KERMA and exposure to different distances of focal spot having as reference a determined point in space. Taking into account the limitations of this rule and its application, we have as main objective to verify the applicability of ISL to determine exposure on radiodiagnostic area (maximum tensions between 30kVp and 150kVp). Experimental data was collected, deterministic calculation and simulation using Monte Carlo Method (Geant4 toolkit) were applied to conventional radiology and mammography. The experimental data was collected using a calibrated ionizing chamber TNT 12000 from Fluke. The conventional X-ray equipment used was a Multix Top of Siemens, with Tungsten track and total filtration equivalent to 2.5 mm of aluminum; and the mammographic equipment was a Mammomat Inspiration from Siemens, presenting the track-add filtration combinations of Molybdenum-Molybdenum, Molybdenum-Rhodium, Tungsten-Rhodium. Both equipments have the Quality Control testes in agreement to Brazilian regulations. Based on the results it is possible conclude that the ISL presents lower performance in correct measurements on mammography spectra, i.e. the associated error (differences) achieves a value up to 77.8% and it can cause significant impact on both areas depending on the spectra energy and distance to correct.
Downloads
Referências
AAPM - American Association of Physicists in Medicine. Performance Specifications and Acceptance Testing for X-ray Generators and Automatic Exposure Control Devices. AAPM Report 14. AIP, 1:96, 1985.
AAPM - American Association of Physicists in Medicine. Protocols for the Radiation Safety Surveys of Diagnostic Radiological Equipment. AAPM Report 25. AAPM, 1989.
AAPM - American Association of Physicists in Medicine. Equipment Requirements and Quality Control for Mammography. AAPM Report 29. AAPM, 1990.
AGOSTINELLI, S. et al. GEANT 4 — a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, v 506, Issue 3, p.250-303. 2003.
ALLISON, J. et al. Geant4 Developments and Applications. IEEE Transactions on Nuclear Science, v. 53, n. 1. 2006.
ATTIX, F. H. Gamma- and X-ray interactions in matter. In: Attix, F. H. Introduction to radiological physicists and radiation dosimetry. 2.ed, John Wiley & Sons inc. p 124-159. 1986.
AUS, R.J.et al. A. Dependence of scatter on atomic number for x rays from tungsten and molybdenum anodes in the mammographic energy range.MedPhys, v.26, p.1306-1311. 1999.
ANVISA – Agência nacional de Vigilância Sanitária - Ministério da Saúde – Secretaria de Vigilância Sanitária. Diretrizes de Proteção Radiológica em Radiodiagnóstico Médica e Odontológic. ANVISA Portaria 453. p. 38. 1998.
CRANLEY K. et al. Catalogue of Diagnostic X-ray Spectra and Other Data. Report 78. The Institute of Physics and Engineering in Medicine. 1997.
DANCE, D.R. et al. Beast dosimetry using high-resolution voxel phantoms. Radiation Protection Dosimetry, v. 14, p. 359-363. 2005.
EUREF – European Reference Organisation for Quality Assured Breast Cancer Screening and Diagnostic Services. European protocol on dosimetry in mammography. EUR Report 16263. EN, Luxemburgo, p. 76. 1996.
GINGOLD, E. L.; WU, X.; BARNES, G. T. Contrast and dose with Mo-Mo, Mo-Rh, and Rh-Rh target-filter combinations in mammography. Radiology, v.195, p. 639-644. 1995.
HOFF, G. Cálculo da Dose em Glândula Mamária, Utilizando o Código de Transporte de Monte Carlo MCNP, para as Energias Utilizadas em Mamografia. 2005. Tese (Doutorado em Biociências Nucleares) – Universidade do Estado do Rio de Janeiro, Rio de Janeiro. 2005.
HOFF, G. Efeito da filtração adicional de ródio e de molibdênio no contraste da imagem e dose glandular em mamografia. 2000. Dissertação (Mestrado em Biociências Nucleares) – Universidade do Estado do Rio de Janeiro, Rio de Janeiro. 2000.
ICRU - International Commission on Radiation Units and Measurements. Tissue substitutes in Radiation Dosimetry and Measurement. ICRU Report 44, Maryland: ICRU. p. 189. 1989.
KRAMER, R. et al. All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry. Phys. Med. Biol, v. 49, p. 5203–5216. 2004.
NG, K.P.; TANG, F. H. Monte Carlo simulation of x ray spectra in mammography. Phys. Med. Biol, v. 45, p. 1309-1318. 2000.
NIST - National Institute of Standard and Technology – Physical Reference Data. Available at: <http://physics.nist.gov/PhysRefData/contents.html /> Last accessed: 20. Aug, 2014.
TAKAHASHI, M.; KINASE, S.; R. KRAMER. Evaluation of counting efficiencies of awhole-body counter using monte carlo simulation with voxel phantoms. Radiation Protection Dosimetry advance access, v. 144, p. 1–4. 2011.
WU, X. et al. Normalized average glandular dose in molybdenum target-rhodium filter and Rhodium target-Rhodium filter mammography. Med. Phys., v.193, n.3, p. 83-89. 1994.
WU, X.; BARNES, G. T.; TUCKER, D. M. Spectral dependence of glandular tissue dose in screen-film mammography. Radiology, v. 179, p. 143-148. 1991.
ZANKL, M. et al. Organ dose conversion coefficients for external photon irradiation of male and female voxel models. Phys. Med. Biol, v. 47, p. 2367–2385. 2002.
Downloads
Publicado
Edição
Seção
Categorias
Licença
Direitos autorais (c) 2015 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/