Dose profile evaluation of a 137Cs source using a solid water phantom
DOI:
https://doi.org/10.15392/bjrs.v8i3.1220Palabras clave:
Depth Dose Profile, Cesium-137, Solid Water PhantomResumen
The precision in the dose values delivered in irradiation processes is essential for the efficiency and quality control of these processes. Radiochromic films can be used to record doses and the calibration of these films must be performed so that they can be used as dosimeters. The planning and control of the radiation released in a process allows to adjust the desired dose in the irradiated object. The photons in the primary beam interact with the matter of the object and the beam energy is attenuated due to these interactions. The attenuation depends on the characteristics of the beam and the composition of the irradiated matter. When a beam of photons propagates on an object, it tends to deposit more energy close to the surface and after reaching the maximum dose value, it decreases the dose values with depth. The films used in this work are of the Gafchromic External Beam Therapy (EBT) type, insensitive to visible light and can be prepared in places where sunlight and artificial light exists. Like many other dosimeters, which follow certain protocols, radiochromic films can provide an absolute dose measurement. Radiochromic films are characterized by their linearity, reproducibility, uniformity, sensitivity, and stability after irradiation. For the realization of the experiments, a part of the film to be irradiated was removed designated as background (BG). BG represents a piece of radiochromic film that will not change and reflects changes in film absorption in relation to environmental conditions such as temperature, visible light and scanning light, for example and that must be handled from it way that the film radiated. In this work, irradiations of a solid water phantom were performed using a source of cesium-137 with the deposition of a maximum absorbed dose value of 2.0 Gy. The phantom was placed 1,0 m far from the source collimator. Radiochromic films were placed inside the phantom to obtain the depth variation dose profile and axial dose profiles measured at 1.0 cm depth in the phantom. The dose variation profile in depth allowed to verify that the maximum dose value happened at a depth between 10 and 13 mm, very close to the surface due to the beam energy range (keV). The axial profiles presented a flatness of about 9.4 cm with a total field of 12 cm in diameter.Descargas
Referencias
KHAN, FAIZ M., GIBBONS, JOHN P. The Physics of Radiation Therapy. Fifth Edition. Wolters Kluwer Health. Philadelphia, EUA. 2014.
BALAGAMWALA, Ehsan H., STOCKHAM, Abigail, MACKLIS, Roger, SINGH, Arun D. Introduction to Radiotherapy and Standard Teletherapy Techniques. Ophthalmic Radiation Therapy. Techniques and Applications. Dev Ophthalmol. Basel, Karger, 2013, vol 52, pp 1-14. 2013.
SCAFF, LUIZ A. M. Física da Radioterapia. 1 ed. Sarvier Editora de Livros Médicos Ltda. São Paulo. 1997. 84-86 p.
MOURÃO, A. P.; OLIVEIRA, F. A. Fundamentos de radiologia e imagem. 1 ed. São Caetano do Sul, SP: Difusão, 2009. 343-365 p.
International Atomic Energy Agency. IAEA. Technical Reports Series No 483 – Dosimetry of Small Static Fields used in External Beam Radiotherapy – An International Code of Practice for Reference and Relative Dose Determination. Viena, 2007.
THOMADSEN, Bruce R., KARELLAS, Andrew. Clinical 3D Dosimetry in Modern Radiation Therapy - Imaging in Medical Diagnosis and Therapy. Edited by Ben Midjeen. CRC PRESS. 2018.
IAEA - International Atomic Energy Agency. Dosimetry of Small Static Fields Used in External Beam Radiotherapy - An International Code of Practice for Reference and Relative Dose Determination. Vienna: IAEA, 2017. Technical Reports Series 483. 228 p.
DEVIC, Slobodan. Radiochromic film dosimetry: Past, present, and future. Department of Radiation Oncology, Jewish General Hospital, McGill University. Physica Medica. 122-134. 2011.
DEVIC, Slobodan.; ALDELAIJAN, Saad.; ALZORKANY, Faisal.; MOFTAH, Belal.; BUZUROVIC, SEUNTJENS, Jan.; TOMIC, Nada. Use of a control film piece in radiochromic film dosimetry. Associazione Italiana di Fisica Medica. Elsevier. 2016.
DEVIC, Slobodan, TOMIC, Nada, LEWIS, David. Reference radiochromic film dosimetry: Review of technical aspects. Department of Radiation Oncology, Jewish General Hospital, McGill University. Physica Medica. 541-556. 2016.
ASHLAND. Gafchromic™ XR film – State of the art processor less products for radiology applications. USA: Global Headquarters, 2016.
STS Steuerungstechnik & Strahlenschutz GmbH. Irradiators - OB85, OB85/1, 85/3. Harxburtteler StraBe 2. 1993.49 p.
CHUL, S. Y. F.; Ekström, L. P.; Firestone, R. B. LBNL nuclear data search. Available at: <http://nucleardata.nuclear.lu.se/toi>. Last accessed: 30.10.2019.
SUN NUCLEAR. Available at: <https://www.sunnuclear.com>. Last accessed: 30.10.2019.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2020 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/