A NOVEL COARSE-MESH METHOD APPLIED TO NEUTRON SHIELDING PROBLEMS USING THE MULTIGROUP TRANSPORT THEORY IN DISCRETE ORDINATES FORMULATIONS
DOI:
https://doi.org/10.15392/bjrs.v8i3A.1421Palabras clave:
neutron transport theory, mathematical modelling, discrete ordinates, neutron shielding, fixedsource calculations, deterministic computational neutronic.Resumen
In this paper, we propose a new deterministic numerical methodology to solve the one-dimensional linearized Boltzmann equation applied to neutron shielding problems (fixed-source), using the transport equation in the discrete ordinates formulation (SN) considering the multigroup theory. This is a hybrid methodology, entitled Modified Spectral Deterministic Method (SDM-M), that derives from the Spectral Deterministic Method (SDM) and Diamond Difference (DD) methods. This modification in the SDM method aims to calculate neutron scalar fluxes with lower computational cost. Two model-problems are solved using the SDM-M, and the results are compared to the coarse-mesh methods SDM, Spectral Green's Function (SGF) and Response Matrix (RM), and the fine-mesh method DD. The numerical results were obtained in the programming language JAVA version 1.8.0_91.
Descargas
Referencias
LEWIS, E. E.; MILLER, W. F. Computational methods of neutron transport. Wiley, NewYork & United States of America, 1993.
DUDESTADT, J. J.; HAMILTON, L. J. Nuclear reactor analysis. Wiley, New York & United States of America, 1976.
OLIVA, A. M. Método Espectral Determinístico para a solução de problemas de transporte de nêutrons usando a formulação das ordenadas discretas, Tese de Doutorado, Universidade do Estado do Rio de Janeiro,
OLIVA, A. M.; ALVES FILHO, H.; SILVA, D. J.; GARCIA, C. R.. The spectral nodal method applied to multigroup SN neutron transport problems in one-dimensional geometry with fixedsource. Progress in Nuclear Energy, v. 22, p. 106-113, 2018.
BARROS, R. C. A Spectral Nodal Method for the Solution of Discrete Ordinates Problems in one and two Dimensional Cartesian Geometry. PhD Thesis, The University of Michigan, 1990.
BARROS, R. C.; LARSEN, E. W. A spectral nodal method for one-group X, Y-geometry discrete ordinates problems. Nuclear Science and Engineering, v. 111, p. 34-45, 1992.
DA SILVA, O. P. Um método de Matrix Resposta para cálculos de transporte multigrupos de energia na formulação de ordenadas discretas em meios não-multiplicativos. Tese de Doutorado, Universidade do Estado do Rio de Janeiro, 2018.
BENASSI, M. COTTA, R. M., Siewert, C. E. The PN Method for Radiative Transfer Problems with Reflective Boundary Conditions, Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 30, pp. 547_553, 1983.
BARICHELLO, L. B; GARCIA, R. D. M.; SIEWERT, C. E. A Spherical Harmonics Solution For Radiative-Transfer Problems With Reflecting Boundaries And Internal Sources, Journal of Quantitative Spectroscopy and Radiative Transfer, v. 60, no. 2, p. 247-260, 1998.
BARICHELLO, L. B.; SIEWERT, C. E.. A Discrete Ordinates Solution For A Non-Grey Model With Complete Frequency Redistribution. Journal of Quantitative Spectroscopy and Radiative Transfer, v. 62, p. 665-675, 1999.
VARGAS, R.;VILHENA, M. T. A closed-form solution for one-dimensional radiative condutive problem by the decomposition and LTSn methods. Journal of Quantitative Spectroscopy and Radiative Transfer, v. 61, p. 303-308, 1999.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2021 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/