Modeling dynamic scenarios for safety, reliability, availability, and maintainability analysis
DOI:
https://doi.org/10.15392/bjrs.v8i3A.1464Palabras clave:
Safety Analysis, Reliability, availability and maintainability (RAM) analysis, Petri Net, Integrated Logistic Support (ILS).Resumen
Safety analysis uses probability combinatorial models like fault tree and/or event tree. Such methods have static basic events and do not consider complex scenarios of dynamic reliability, leading to conservative results. Reliability, availability, and maintainability (RAM) analysis using reliability block diagram (RBD) experience the same limitations. Continuous Markov chains model dynamic reliability scenarios but suffer from other limitations like states explosion and restriction of exponential life distribution only. Markov Regenerative Stochastic Petri Nets oblige complex mathematical formalism and still subject to state explosions for large systems. In the design of complex systems, distinct teams make safety and RAM analyses, each one adopting tools better fitting their own needs. Teams using different tools turns obscure the detection of problems and their correction is even harder. This work aims to improve design quality, reduce design conservatism, and ensure consistency by proposing a single and powerful tool to perform any probabilistic analysis. The suggested tool is the Stochastic Colored class of Petri Nets, which supplies hierarchical organization, a set of options for life distributions, dynamic reliability scenarios and simple and easy construction for large systems. This work also proposes more quality rules to assure model consistency. Such method for probabilistic analysis may have the effect of shifting systems design from “redundancy, segregation and independency” approach to “maintainability, maintenance and contingency procedures” approach. By modeling complex human and automated interventional scenarios, this method reduces capital costs and keeps safety and availability of systems.
Descargas
Referencias
EYRING, V. et al. Transport Impacts on Atmosphere and Climate: Shipping, Atmospheric Environment. Journal of Atmosphere and Environment, v. 44, n. 37, p. 4735-4771, 2009. ISSN 1352-2310. Disponivel em: <http://www.sciencedirect.com/science/article/pii/s1352231009003379>.
ROYAL ACADEMY OF ENGINEERING. Future Ship Powering Options Exploring alternative methods of ship propulsion. Royal Academy of Engineering. United Kingdom. 2013.
ONDIR FREIRE, L.; DE ANDRADE, D. A. Historic survey on nuclear merchant ships. Nuclear Engineering and Design, n. 293, p. 176–186, 2015. ISSN 0029-5493.
ONDIR FREIRE, L.; DE ANDRADE, D. A. The Role of Nuclear Power from a System Engineering Standpoint. World Journal of Nuclear Science and Technology, v. 07, n. 03, p. 167-188, 2017. Disponivel em: <http://dx.doi.org/10.4236/wjnst.2017.73015>.
FREIRE, L. O.; DE ANDRADE, D. A. Economically Feasible Mobile Nuclear Power Plant for Merchant Ships and Remote Clients. Nuclear Technology, 2018. ISSN 1943-7471.
SOUZA, G. F. M.; GABE, C. A. Reliability modeling of partially repairable systems applied on electrical power system. Annual Reliability and Maintainability Symposium (RAMS). Orlando: IEEE. 2017. p. 1-6.
HAAS, P. J. Colored Stochastic Petri Nets. In: ______ Stochastic Petri Nets. Springer Series in Operations Research. New York, NY: Springer, 2002. p. 385-445. ISBN 978-0-387-21552-5.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2021 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/