Impact of electron beam irradiation in potato starch films containing hibiscus aquous extract
DOI:
https://doi.org/10.15392/bjrs.v9i2.1704Palabras clave:
hibiscus, films, electron beamResumen
The development of starch films containing natural antioxidants is one alternative of active packaging. Starch is a well-studied natural biopolymer that can be used for the development of biodegradable films because it presents a low cost, is easy to obtain and presents good ability to form films. Hibiscus sabdariffa, commonly known as hibiscus, roselle or red sorrel, is an annual herbaceous sub shrub that contains many types of biocompounds, including organic and phenolic acids. The aim of the present work was to determine the influence of electron beam irradiation on potato starch film containing hibiscus extract. The aqueous hibiscus solution was prepared by boiling for 3 min 1% w/ml dehydrated hibiscus flowers in 500 ml deionized water. The film forming solution was prepared by casting (5% potato starch, 3% glycerol as plasticizer and the hibiscus solution) and irradiated in a 1.5 MeV electron beam accelerator Dynamitron II (Radiation Dynamics Inc.), with doses of 0, 20, 40 and 60 kGy. After drying some mechanical properties were measured. The tensile strength of the control films and the irradiated ones was established. There were no significant differences among them. It looks like hibiscus antioxidants were able to prevent the expected starch radiation degradation process caused by radiation generated free radicals.
Descargas
Referencias
JIMENEZ, A.; FABRA, M. J.; TALENS P.; CHIRALT A. Edible and biodegradable starch film: A review. Food and Bioprocess Technology, vol. 5, p. 2058-2076, 2012.
GARCIA, N. L.; FAMA, L.; D’ACCORSO, N. B.; GOYANES, S. Biodegradable starch nanocomposites. Eco-friendly polymer nanocomposites, vol.75, p. 17-77, 2015.
SESSINI, V.; ARRIETA M. P.; KENNY J. M.; PEPONI, L. Processing of edible films based on nanoreinforced gelatinized starch. Polymer Degradation and Stability, vol.132, p. 157-168, 2016.
MALI, S.; GROSSMANN, M. V. E.; GARCIA, M. A.; MARTINO, M. N.; ZARITZKY, N. E. Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. Journal of Food Engineering, Vol. 75, p. 453-460, 2006.
JARAMILLO, C. M.; GUTIERREZ, T. J.; GOYANES, S.; BERNAL, C.; FAMA, L. Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydrate Polymers, vol. 151, p. 150-159, 2016.
ARAÚJO J. M. A. Química de alimentos: teoria e prática, vol. 5, 2011.
ACOSTA-ESTRADA, B. A.; GUTIÉRREZ-URIBE, J. A. ; SERNA-SALDIVAR, S. O. Bound phenolics in foods, a review. Food Chemistry, Vol. 152, p.46-55, 2014.
MOO-HUCHIN, V. M.; ESTRADA-MOTA, I.; ESTRADA-LEÓN, R.; CUEVAS-GLORY, L.; VÁZQUEZ, E. O.; VARGAS y VARGAS, M. D. L; BETANCUR-ANCONA, D.; SAURI-DUCH, E. Determination of some physicochemical characteristics, bioactive compounds and antioxidant activity of tropical fruits from Yucatan, Mexico. Food Chemistry, vol. 152, p. 508-515, 2014.
SANTANA, M. C. C. B.; MACHADO, B. A. S.; SILVA, T. N.; NUNES, I. L.; DRUZIAN, J. I. Incorporação de urucum como aditivo antioxidante em embalagens biodegradáveis a base de quitosana. Ciência Rural, vol. 43, p. 544-550, 2013.
L. Y. YAMAMOTO, A. M. DE ASSIS, S. R. ROBERTO, Y. R. BOVOLENTA, S. L. NIXDORF, E. GARCIA-ROMERO, I. HERMOSIN-GUTIÉRREZ, “Application of abscisic acid to grapes (Vitis vinifera x Vitis labrusca) for color improvement: Effects on color, phenolic composition and antioxidant capacity of their grape juice. Food Research International, vol. 77, p. 572-583, 2015.
DAI, L.; QIU, C.; XIONG, L.; SUN, Q. Characterization of corn starch-based films reinforced with taro starch nanoparticles. Food Chemistry, vol. 174, p. 82–88, 2015.
BIGI, A.; BRACCI, B.; COIAZZI, G.; PANZAVOLTA, S.; ROVERI, N. Drawn gelatin films with improved mechanical properties. Biomaterials, v.19, p. 2335-40, 1998.
SABATO, S. F.; OUATTARA, B.; YU, H.; D’APRANO, G.; LE TIEN, C.; MATEESCU, M. A. Mechanical and barrier properties of cross-linked soy and whey protein based films. J.Agric Food Chem, vol. 49; p.1397-1403, 2000.
CHMIELEWSKI, A. G.; HAJI-SAEID, M.; AHMED, S. Progress in radiation processing of polymers. Nuclear Instruments and Methods in Physics Research, vol. 236, p.44-54, 2005.
GENERAL STANDARD FOR IRRADIATED FOODS, CODEX STAN 106-1983, REV.1-2003. Codex Alimentarius Commission. Available at: < www.codexalimentarius.org>.
GONTARD, N.; GUILBERT, S.; CUQ, J. L. Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. J. Food Sci., vol. 57, p. 190-199, 1992.
CHIONO, V.; PULIERI, E.; VOZZI, G.; CIARDELLI, G.; AHLUWALIA, A.; GIUSTI, P. Genipin-crosslink chitosan gelatin blends for biomedical applications. J. Mater. Sci.: Mater, vol. 19, p.889-898, 2008.
ASTM, American Society for Testing and Materials - Standard D882-97, Standard test method for tensile properties of thin plastic sheeting, 1997.
BRAND-WILLIAMS, W.; CUVELIER, M. E.; BERSET, C. Use of a free radical method to evaluate antioxidant activity. Lebenson Wiss Technol., p. 25-30, 1995.
COATES, J. Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry, p. 10815-10837, 2000.
BENBETTAIEB, N.; KARBOWIAK, T.; BORNAZ, S.; DEBEAUFORT, F. A spectroscopic analyses for understanding the effect of electron beam irradiation doses on mechanical and transport properties and microstructure of chitosan-fish gelatin blend films, 2015a.
CERQUEIRA, M. A.; SOUZA, B. W.; TEIXEIRA, J. A.; VICENTE, A. A. Effect of glycerol and corn oil on physicochemical properties of polysaccharide films: a comparative study. Food Hydrocolloids, vol. 27, p.175-184, 2012.
BHAT, R.; KARIM, A.A. Impact of radiation processing on starch. Comprehensive Reviews in Food Sciences & Food Safety, vol. 8, p. 44-58, 2009.
TEIXEIRA, B. S.; GARCIA, R. H. L.; TAKINAMI, P. Y. I.; MASTRO, N. L. Comparison of gamma radiation effects on natural corn and potato starches and modified cassava starch. Radiation Physics and Chemistry, vol. 142, p. 44-49, 2018.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2021 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/