Internal computational dosimetry of natural cisplatin activated in neutron flux
DOI:
https://doi.org/10.15392/bjrs.v10i2A.1816Palabras clave:
Cisplatin, Monte Carlo, Internal DosimetryResumen
Cisplatin is currently used in the treatment of numerous types of tumors, such as head and neck, esophagus, bladder, testicle. However, the cisplatin use is limited due to its cytotoxic effects. Thus, considering its side effects, lines of research are looking for new technologies to reduce the dose of the chemotherapeutic agent needed to control the disease, which may reduce these side effects. The objective of this work was to perform the internal dosimetry of 191Pt radioisotope derived from the activation of natural cisplatin, thus contributing to the evaluation of the feasibility of a new radiopharmaceutical of natural cisplatin activated by neutrons for application in humans. The dosimetry was obtained with Monte Carlo simulations using two stylized phantoms developed by authors Dragana Krstic and Dragoslav Nikezic and the ICRP adult reference voxelized phantoms. As results, differences were observed between absorbed doses estimated using the two types of phantoms (analytical and voxelized). The highest doses noted in the analytical phantom were in the kidneys (1.58 mGy/MBq), liver (1.32 mGy/MBq), spleen (1.23 mGy/MBq), bladder wall (0.74 mGy/MBq), gallbladder wall (0.56 mGy/MBq), pancreas (0.41 mGy/MBq), and adrenals (0.39 mGy/MBq). For the voxelized phantoms, the highest doses obtained were: kidneys (1.46 mGy/MBq), spleen (1.13 mGy/MBq), liver (1.11 mGy/MBq), gallbladder wall (0.47 mGy/MBq), adrenals (0.41 mGy/MBq), bladder wall (0.36 mGy/MBq), and pancreas (0.29 mGy/MBq). The effective dose was 0.22 mSv/MBq for the analytical phantom, a value similar to that obtained with voxelized phantoms (0.20 mSv/MBq).
Descargas
Referencias
AIH – National Cancer Institute - The "Accidental" Cure—Platinum-based Treatment for Cancer: The Discovery of Cisplatin. Disponível em: https://www.cancer.gov/research/progress/discovery/cisplatin, acessado em Agosto de 2021
AREBERG, J.; NORRGREN, K.; MATTSSON, S. Absorbed doses to patients from 191Pt-, 193mPt- and 195mPt-cisplatin, Applied radiation and isotopes, v. 51, n. 5, p. 581-586 (1999).
Briesmeister, Judith F. et al. Código geral de transporte de partículas N de Monte Carlo MCNPTM-A. Versão 4C, LA-13709-M, Laboratório Nacional de Los Alamos, v. 2, 2000.
BUSHONG, S. C. Health physics. In: BUSHONG, S. C. Radiologic science for technologists: physics, biology and protection, 6th ed., St.Louis: Mosby, 1997. p. 430-493.
CEMBER, H. Introduction to health physics, 3rd ed. New York: MCGraw-Hill, 1996.
Cherry, S. R.; SORENSON, J. A.; PHELPS, M. E. Physics in Nuclear Medicine. 4th. ed. Philadelphia: Elsevier Health Sciences, 2012.
Court, W. S. Radioactive platinum complexes for cancer treatment. US 2003/0082102 A1, 1 de maio. 2003. 9p.
Cowley, A.; Woodward, B. A healthy future: platinum in medical applications. Platinum Metals Review, v. 55, n. 2, p. 98-107, 2011.
Cristy, M..; Eckerman, K. F. Frações específicas absorvidas de energia em várias idades de fontes internas de fótons: 1. métodos, um ano de idade. Oak Ridge National Lab., TN (EUA), 1987.
Dasari, S.; Tchounwou, P. B. Cisplatin in cancer therapy: molecular mechanisms of action. European journal of pharmacology, v. 740, p. 364-378, 2014.
Dowell, J.A., Sancho, A.R., Anand, D., Wolf, W., Noninvasive measurements for studying the tumoral pharmacokinetics of platinum anticancer drugs in solid tumors. Elsevier Science B.V., 2000.
Fontes, A. P. S.; Almeida, S. G.; Nader, L. A. Compostos de platina em quimioterapia do câncer. Química Nova, v. 20, p. 398-406, 1997.
Gadelha, M. I. P.; Costa, M. R.; Almeida, R. T. Estadiamento de tumores malignos-análise e sugestões a partir de dados da APAC. Revista brasileira de cancerologia, v. 51, n. 3, p. 193-199, 2005.
Garnuszek, P.; Liciánska, I.; Skierski, J. S.; Koronkiewicz, M.; Mirowski, M.; Wiercioch, R.; Mazurek, A. P. Biological investigation of the platinum (II)-[∗ I] iodohistamine complexes of potential synergistic anti-cancer activity. Nuclear medicine and biology, v. 29, n. 2, p. 169-175, 2002.
Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorganic chemistry, v. 88, p. 102925, 2019.
Hadid, L.; Gardumi, A.; Desbrée, A. Evaluation of Absorbed and Effective Doses to Patients from Radiopharmaceuticals Using the ICRP 110 Reference Computational Phantoms and ICRP 103 Formulation. Radiat Prot Dosim, 156(2):141–159. 15, 2013.
ICRP. Adult reference computational phantoms. Ann ICRP, v. 39, p. 1-166, 2009.
ICRP. Basic Anatomical and Physiological Data for Use in Radiological Protection Reference Values. ICRP Publication 89. Ann. ICRP, v. 32, p. 1-246, 2002
INCA (Instituto Nacional de Câncer), “Estatísticas de câncer”, em: https://www.inca.gov.br/numeros-de-cancer, acessado em Agosto de 2021.
Júnior, A. D. C.; Abrantes, F. M.; Menezes, M. A.; Leal, A. S., Cardoso, V. N.; Oliveira, M. C. Use of labelled cisplatin obtained by direct irradiation in a preliminary biodistribution study. Brazilian Archives of Biology and Technology, v. 48, p. 85-88, 2005.
Júnior, A. D. C.; Mota, L. G.; Nunan, E. A.; Wainstein, A. J. A., Wainstein, A. P. D. L.; Leal, A. S.; Cardoso, V. N.; Oliveira, M. C. Tissue distribution evaluation of stealth pH-sensitive liposomal cisplatin versus free cisplatin in Ehrlich tumor-bearing mice. Life sciences, v. 80, n. 7, p. 659-664, 2007.
Kang, X.; Xiao, H.; Song, H.; Jing, X.; Yan, L.; Qi, R. Advances in drug delivery system for platinum agents based combination therapy. Cancer biology & medicine, v. 12, n. 4, p. 362, 2015.
Lange, R.C., Spencer, R.P., Harder, H.C., The antitumor agent cis-Pt(NH3)2CI2: Distribution studies and dose calculations for 193mpt and 195mpt, Instituto de Pesquisa Energeticas E Nucleares - IPEN/CNEN, 2017
Leal, A. S.; Bernardes, F. D.; Mendes, B. M. Estudo preliminar da dose absorvida e efetiva da cisplatina radiomarcada com 195mPt. Brazilian Journal of Radiation Sciences, v. 8, n. 1, 2020.
Leal, A. S.; Bernardes, F. D.; Gonçalves, N. A. Z. Possible therapeutic use of radiolabeled cisplatin, International Nuclear Atlantic Conference – INAC, 2017.
Leal, A. S.; Júnior, A. D. C.; Abrantes F. M.; Menezes, M. A. B. C.; Ferraz, V.; Cruz, T. S.; Cardoso, V. N.; Oliveira, M. C. Production of the radioactive antitumoral cisplatin., Applied radiation and isotopes, v. 64, n. 2, p. 178-181, 2006.
Leal, A. S.; Marzano, I. M.; Pereira-Maia, E. C. P.; Jačimović, R. Investigation of the potential antitumor radioactive complex of platinum (II) with tetracycline. Journal of Radioanalytical and Nuclear Chemistry, v. 309, n. 1, p. 85-89, 2016.
Marinelli, L.; Quimby, E.; Hine, G. Dosage determination with radioactive isotopes II, practical considerations in therapy and protection. Am J Roent Radium Ther, v. 59, p. 260-280, 1948.
MCNPX, “MCNPXTM USER’S MANUAL”, versão 2.7.0, MCNPX , 2011.
MENDES, B. M.; FERREIRA, A. V.; NASCIMENTO, L. T. C.; FERREIRA, S. M. Z. M. D.; SILVEIRA M. B.; SILVA J. B.; New Radiation Dosimetry Estimates for [18F]FLT based on Voxelized Phantoms., RADIATION RESEARCH 190, pp. 37–44, 2018.
RASBAND, W. S. ImageJ, U. S. National Institutes of Health. Bethesda, Maryland, USA. 2011. Available at: <http://imagej.nih.gov/ij/>. Last accessed: 10 Sept. 2012.
Rozy, K.; Piyali, C.; Chadha, V. D. Radiolabeling of cisplatin and its biodistribution in an experimental model of lung carcinogenesis. Journal of Environmental Pathology, Toxicology and Oncology, v. 33, n. 1, 2014.
Sarrut, D.; Bardiès, M.; Boussion, N; Freud, N; Jan, S; Létang, Jm; Loudos, G; Maigne, L; Marcatili, S; Mauxion, T; Papadimitroulas, P; Perrot, Y; Pietrzyk, U; Robert, C; Schaart, Dr; Visvikis, D; Buvat, I. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Medical physics, v. 41, n. 6, p. 064301, jun. 2014.
Sathekge, M.; Wagener, J.; Smith, S. V.; Soni, N.; Marjanovic-Painter, B.; Zinn, C.; Van De Wiele, C.; Asseler, Y. D’; Perkins, G.; Zeevaart, J. R., Biodistribution and dosimetry of 195mPt-cisplatin in normal volunteers. Nuklearmedizin, v. 52, n. 06, p. 222-227, 2013.
Smith, P.H.S., Taylor, D.M., distribution and retention of the antitumor agent 195mpt-cis-dichlorodiammine platinum (II) in man, Royal Marsden Hospital and Institute of Cancer Research, Sutton, Surrey, U.K, 2017.
Snyder, W. S.; Cook, M. J.; Nasset, E. S.; Karhausen, L. R.; Howells, P. G.; Tipton I. H. Report of the Task Group on Reference Man, The International Commission on Radiological Protection, 1974
Snyder, W.; Ford, M.; Warner, G. Estimates of specific absorbed fractions for photon sources uniformly distributed in various organs of a heterogeneous phantom. MIRD pamphlet No. 5, revised. Society of Nuclear Medicine, 1978
Soares, M. A.; Mattos, J. L.; Pujatti, P. B.; Leal, A. S. Evaluation of the synergetic radio-chemotherapy effects of the radio labelled cisplatin for the treatment of glioma. Journal of Radioanalytical and Nuclear Chemistry, v. 292, n. 1, p. 61-65, 2012.
SOUZA P. L. G.; BRANDÃO J. O.; CALIXTO M. S.; MENDES M. E.; SANTOS J. Â. DE L.; SANTOS N.; VILELA E. C.; LIMA F. F. Rate verification of chromosome alterations in human blood irradiated by neutron-gamma mixed field, In: INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE, 2011, Belo Horizonte. Annals… Belo Horizonte: Comissão Nacional de Energia Nuclear, 2011. p. 24-32.
Stabin, M. G. Uncertainties in internal dose calculations for radiopharmaceuticals. Journal of nuclear medicine: official publication, Society of Nuclear Medicine, v. 49, n. 5, p. 853–60, 1 maio 2008.
Yoriyaz, H. Método de Monte Carlo: princípios e aplicações em Física Médica Monte Carlo Method : principles and applications in Medical Physics. Revista Brasileira de Física Médica, v. 3, n. 1, p. 141–149, 2009.
ICRU - International Commission on Radiation Units and Measurements. Fundamental quantities and units for ionizing radiation. ICRU Report 60, Bethesda: ICRU, 1998. 24p.
ZANKL, M. et al. Electron specific absorbed fractions for the adult male and female ICRP/ICRU reference computational phantoms Phys. Med. Biol. 57 4501, 2012.
ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP, v. 37, p. 2-4, 2007.
Descargas
Publicado
Número
Sección
Categorías
Licencia
Derechos de autor 2022 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/