Generalized linear models applied to the analysis of the effectiveness of the Sterile Insect Technique

Autores/as

  • Guilherme Rodrigues Institute of Biosciences of Botucatu, IBB-Unesp
  • Ariane Campolim Cristino Institute of Biosciences of Botucatu, IBB-Unesp
  • Daniela R. Cantane Institute of Biosciences of Botucatu, IBB-Unesp
  • Helenice O. Florentino Institute of Biosciences of Botucatu, IBB-Unesp
  • Marco A. R. Fernandes Medical School of Botucatu, FMB-Unesp
  • Paulo E. M. Ribolla Institute of Biosciences of Botucatu, IBB-Unesp
  • Rogerio A. Oliveira Institute of Biosciences of Botucatu, IBB-Unesp

DOI:

https://doi.org/10.15392/2319-0612.2024.2352

Palabras clave:

Dengue, Multivariate Linear Regression, Ionizing radiation

Resumen

Aedes aegypti mosquito, popularly known as the dengue mosquito, represents a serious public health problem, because it is the vector responsible for several serious diseases such as Chikungunya fever, Zika virus and Dengue, the latter of which has a higher incidence in the Brazilian population. That mosquito has a high capacity for adaptation in the most diverse types of environments, mainly in places with high population density and lack of basic sanitation, factors that favor its proliferation. The control methods used by the epidemiological surveillance agencies are divided into three modalities: mechanical control, chemical control and biological control. Among the biological control methods, the Sterile Insect Technique (SIT) technique stands out, which consists of introducing sterile males into the mosquito population. This article presents reproduction analyzes of a population of natural mosquitoes compared to a population of mosquitoes with the insertion of males sterilized by ionizing radiation, seeking to observe the impact caused by this control method. The statistical analyzes showed the Negative Binomial regression model presented a better fit to the daily egg count data, when this model was compared to the Poisson model. In addition, the introduction of irradiated males decreases the average oviposition rate by approximately 30%.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

AUGUSTO, L. G. S. et al. Aedes aegypti control in Brazil. The Lancet, v. 387, n. 10023, p. 1052-1053, 2016.

ARAÚJO, H. R. C. et al. Aedes aegypti control strategies in Brazil: incorporation of new technologies to overcome the persistence of dengue epidemics. Insects, v. 6, n. 2, p. 576-594, 2015.

BRASIL. MINISTÉRIO DA SAÚDE. FUNDAÇÃO NACIONAL DE SAÚDE. Dengue instruções para pessoal de combate ao vetor: manual de normas técnicas, Brasília, Ministério da Saúde, 2001.

CAVALCANTE, K. R. L. J.; TAUIL, P. L. Risk of re-emergence of urban yellow fever in Brazil. Epidemiologia e Serviços de Saúde, v. 26, p. 617-620, 2017.

LIMA-CAMARA, T. N. Emerging arboviruses and public health challenges in Brazil. Revista de saúde pública, v. 50, p. 36, 2016.

MANIERO, V. C. et al. Epidemiological surveillance of main vector borne arboviral diseases in Brazil: a brief review. Brazilian Journal of Veterinary Medicine, v. 43, n. 1, p. e001420-e001420, 2021.

SILVA, M. M. O. et al. Concomitant transmission of dengue, chikungunya, and Zika viruses in Brazil: clinical and epidemiological findings from surveillance for acute febrile illness. Clinical Infectious Diseases, v. 69, n. 8, p. 1353-1359, 2019.

SHOPE, R. E.; MEEGAN, J. M. Arboviruses. In: Viral Infections of Humans. Springer, Boston, MA, 1997. p. 151-183.

SIQUEIRA JR, J. B. et al. Dengue and dengue hemorrhagic fever, Brazil, 1981–2002. Emerging infectious diseases, v. 11, n. 1, p. 48, 2005.

CRISTINO, A. C. Estudo para estimação das taxas do modelo matemático para prever o comportamento populacional do mosquito transmissor da dengue, Trabalho de Conclusão de Curso, Bacharelado em Física Médica, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências de Botucatu, Botucatu, 2015.

ESTEVA, L.; YANG, H. M. Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique. Mathematical Biosciences, v. 198, n. 2, p. 132-147, 2005.

SECRETARIA DE VIGILÂNCIA EM SAÚDE E AMBIENTE, MINISTÉRIO DA SAÚDE. Monitoramento das arboviroses urbanas: semanas epidemiológicas 1 a 35 de 2023, 2022. Boletim Epidemiológico Número 13, Vol.54, Brasil, nov. 2023.

TAUIL, P. L. Perspectivas de controle de doenças transmitidas por vetores no Brasil, Revista da Sociedade Brasileira de Medicina Tropical, v. 39, n. 3, p. 275-277, 2006.

JUPATANAKUL, N. et al. Engineered Aedes aegypti JAK/STAT pathway mediated immunity to dengue virus, PLoS neglected tropical diseases, v. 11, n. 1, p.e0005187, 2017.

KNIPLING, E. F. et al. Genetic control of insects of public health importance. Bulletin of the World Health Organization, v. 38, n. 3, p. 421, 1968.

KLASSEN, W.; CURTIS, C. F.; HENDRICHS, J. History of the sterile insect technique. In: Sterile insect technique. CRC Press, 2021. p. 1-44.

BAKRI, A. et al. Sterilizing insects with ionizing radiation. Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management, p. 355-398, 2005.

HALL, E. J.; GIACCIA, A. J. Radiobiology for the Radiologist., 7ª edição, 2012.

BOGITSH, B. J.; CARTER, C. E.; OELTMANN, T. N. Human parasitology. Academic Press, 2018.

NELSON, M .J. et al. Aedes aegypti: Biology and ecology. 1986.

MUDELE, O. et al. Modeling dengue vector population with earth observation data and a generalized linear model. Acta Tropica, v. 215, p. 105809, 2021.

MYERS, R. H.; MONTGOMERY, D. C. A tutorial on generalized linear models. Journal of Quality Technology, v. 29, n. 3, p. 274-291, 1997.

PAULA, G. A. Modelos de Regressão com Apoio Computacional, p. 281-311, Instituto de Matemática e Estatística, Universidade de São Paulo, 2013.

PAULA, G. A. Algoritmos de Modelos de Regressão, Available at: https://www.ime.usp.br/~giapaula/textoregressao.htm. Acessed: 2 out. 2020.

DO NASCIMENTO, L. A. et al. Análise estatística de um delineamento de experimento para esterilização por radiação de mosquitos Aedes aegypti. Brazilian Journal of Radiation Sciences, v. 7, n. 3, 2019.

RANATHUNGE, T. et al. Development of the Sterile Insect Techinique to control the dengue vector Aedes aegypti (Linnaeus) in Sri Lanka. PLoS One, v. 17, n. 4, 2022.

LIMA, K. F. A. Avaliação biológica de machos esterilizados por radiação gama, para utilização em programas de controle populacional de Aedes aegypti (Diptera: Culicidae). Dissertação de Mestrado, Mestrado em Biociências e Biotecnologia em Saúde, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, 2015.

LEES, R. S. et al. Back to the future: the sterile insect technique against mosquito disease vectors. Current Opinion in Insect Science. v. 10, p. 156-162, 2015.

GATO, R. et al. Sterile Insect Technique: Successful Suppression of an Aedes aegypti Field Population in Cuba. Insects. v. 12, n. 5, 2021.

Publicado

2024-04-17

Número

Sección

Articles

Cómo citar

Generalized linear models applied to the analysis of the effectiveness of the Sterile Insect Technique. Brazilian Journal of Radiation Sciences (BJRS), Rio de Janeiro, Brazil, v. 12, n. 2, p. e2352, 2024. DOI: 10.15392/2319-0612.2024.2352. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2352. Acesso em: 17 jul. 2025.