A numerical validation between the neutron transport and diffusion theories for a spatial kinetics problem
DOI:
https://doi.org/10.15392/2319-0612.2024.2361Palabras clave:
neutron transport theory, neutron diffusion theory, comparative analysis, K dominant eigenvalueResumen
In this paper, a comparative analysis of numerical results of the neutron transport and diffusion theories for steady-state and transient multigroup problems is presented. The neutron transport equation is known as the one that best describes the behavior of the neutron population in a nuclear reactor. However, due to the difficulty of working with its complete form, other models are considered as approximations to this equation. One such approximation is the neutron diffusion equation, which uses the Fick's Law. It is well known, however, that the diffusion model may not work well under specific conditions. The objective of this work is to establish a quantitative comparison of numerical results obtained for the K dominant eigenvalue and for the scalar fluxes from the two theories and to analyze the influence of the model on the results.
Descargas
Referencias
BELL, G. I.; GLASSTONE, S. Nuclear Reactor Theory. 1th ed. Van Nostrand Reinhold Company, 1970.
DUDERSTADT, J. J.; HAMILTON L. J. Nuclear reactor analysis. New York: John Wiley, 1976.
LEWIS, E. E. Fundamentals of Nuclear Reactor Physic. Elsevier Inc., 2008.
GANAPOL, B. D. Analytical Benchmarks for Nuclear Engineering Applications Case Studies in Neutron Transport Theory. Paris: OECD Publishing, 2008.
ZANETTE, R.; BARICHELLO, L. B.; PETERSEN, C. Z. A study on the solution of the spatial kinetics equations in the neutron diffusion theory. Progress in Nuclear Energy, v. 145, p. 104113, 2022.
AMERICAN NUCLEAR SOCIETY. National Energy Software Center: Benchmark problem book. Illinois: ANL-7416, Supplement 3, 1985.
ZANETTE, R.; BARICHELLO, L. B.; PETERSEN, C. Z. Cálculo de criticalidade pela teoria de difusão de nêutrons: uma análise comparativa de aproximação da densidade de corrente. REMAT: Revista Eletrônica da Matemática, v. 6, n. 2, p. e4006, 2020.
BANFIELD, J. E. Semi-Implicit Direct Kinetics Methodology for Deterministic, Time-Dependent, Three-Dimensional, and Fine-Energy Neutron Transport Solutions. PhD diss., University of Tennessee, 2013.
GINESTAR, D.; VERDÚ, G; VIDAL, V.; BRU, R.; MARÍN, J.; MUÑOZ-COBO, J. L. High order backward discretization of the neutron diffusion equation. Annals of Nuclear Energy, v. 25, p. 47–64, 1998.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/