Virtual Visit to Research Reactor IPEN/MB-01
DOI:
https://doi.org/10.15392/2319-0612.2024.2771Palabras clave:
virtual environment, nuclear reactor, IPEN/MB-01 nuclear reactor, educational virtual environmentResumen
The world is currently facing a significant challenge due to the widespread dissemination of misinformation, compounded by a lack of effective strategies to combat it. The nuclear sector is particularly affected by it, with several people of the general public knowing very little or nothing at all about nuclear reactors, nuclear energy and nuclear technology, leaving them vulnerable to misinformation. The Covid-19 pandemic, alongside modern social dynamics, highlighted this modern social problem. It also forced all activities into an online environment, which was detrimental in terms of the spread of misinformation but also created educational opportunities. This paper focuses on the methodology and development of a 3D virtual environment of the IPEN/MB-01, which is an initial step in a larger educational project concerning a virtual guided tour and virtual educational environment projects of the same reactor, using education as a method of prebunking students about misinformation concerning the nuclear field, and enhancing access for students who are far from the CNEN facilities and to schools who cannot visit due to age restrictions. The work focuses on the development with a realistic approach as recent literature supports the notion that highly immersive virtual reality environments enhance learning outcomes. The final virtual environment provides a foundation for developing diverse projects, each with a specific educational focus or approach. Additionally, the methodology described here can be easily adapted to different reactors or facilities, enabling institutions to create their own educational virtual environments.
Descargas
Referencias
[1] BORNMANN, L.; HAUNSCHIL, R.; MUTZ, R. Growth rates of modern science: a latent piecewise growth curve approach to model publication numbers from established and new literature databases. Humanities and Social Sciences Communications, Online, v. 8, n. 1, 2021.
[2] VAN RAAN, A. Advanced bibliometric methods for the evaluation of universities. Scientometrics, Budapest, v. 45, n. 3, p. 417-423, 1999.
[3] NATIONAL ACADEMIES OF SCIENCES, ENGINEERING, AND MEDICINE. Communicating Science Effectively: A Research Agenda. Washington, D.C.: National Academies Press, 2017. p. 152. ISBN 9780309451055.
[4] KHAN, M. L.; IDRIS, I. K. Recognise misinformation and verify before sharing: a reasoned action and information literacy perspective. Behaviour & Information Technology, United Kingdom, v. 38, n. 12, p. 1194-1212, 2019.
[5] WEST, J. D.; BERGSTROM, C. T. Misinformation in and about science. Proceedings of the National Academy of Sciences, v. 118, n. 15, 2021.
[6] PETER, C.; KOCH, T. When Debunking Scientific Myths Fails (and When It Does Not). Science Communication, v. 38, n. 1, p. 3-25, 2015.
[7] HO, Shirley S.; KRISTIANSEN, Silje. Environmental Debates over Nuclear Energy: Media, Communication, and the Public. Environmental Communication, vol. 13, no. 4, p. 431-439, 9 Apr. 2019.
[8] KIM, Younghwan; KIM, Minki; KIM, Wonjoon. Effect of the Fukushima nuclear disaster on global public acceptance of nuclear energy. Energy Policy, vol. 61, p. 822-828, Oct. 2013.
[9] VISSCHERS, Vivianne H. M.; SIEGRIST, Michael. How a Nuclear Power Plant Accident Influences Acceptance of Nuclear Power: Results of a Longitudinal Study Before and After the Fukushima Disaster. Risk Analysis, vol. 33, no. 2, p. 333-347, 4 July 2012.
[10] HO, Shirley S. et al. Exploring public perceptions of benefits and risks, trust, and acceptance of nuclear energy in Thailand and Vietnam: A qualitative approach. Energy Policy, vol. 127, p. 259-268, Apr. 2019.
[11] LAATO, S.; ISLAM, A. K. M. N.; ISLAM, M. N.; WHELAN, E. What drives unverified information sharing and cyberchondria during the COVID-19 pandemic? European Journal of Information Systems, v. 29, n. 3, p. 299-305, 2020.
[12] IPEN - INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES. Programa de visitas técnicas ao IPEN estão suspensas. Available at: https://web.archive.org/web/20240730183934/https://www.ipen.br/portal_por/portal/interna.php?secao_id=38&campo=13915. Acessed on: 30 jul. 2024.
[13] INNOCENTE, C.; ULRICH, L.; MOOS, S; VEZZETTI, E. A framework study on the use of immersive XR technologies in the cultural heritage domain. Journal of Cultural Heritage, France, vol. 62, p. 268-283, 2023.
[14] MARKS, B.; THOMAS, J. Adoption of virtual reality technology in higher education: an evaluation of five teaching semesters in a purpose-designed laboratory. Education and Information Technologies, 2021.
[15] LAMPROPOULOS, G.; KINSHUK. Virtual reality and gamification in education: a systematic review. Educational technology research and development, 19 Mar. 2024.
[16] HAMILTON, D.; MCKECHNIE, J.; EDGERTON, E.; WILSON, C. Immersive virtual reality as a pedagogical tool in education: a systematic literature review of quantitative learning outcomes and experimental design. Journal of Computers in Education, 11 July 2020.
[17] JENSEN, L; KONRADSEN, F. A review of the use of virtual reality head-mounted displays in education and training. Education and Information Technologies, v. 23, n. 4, p. 1515-1529, 2017.
[18] SANKARANARAYANAN, G.; WOOLEY, L.; HOGG, D.; DOROZHKIN, D.; OLASKY, J.; CHAUHAN, S.; FLESHMAN, J. W.; DE, S.; SCOTT, D.; JONES, D. B. Immersive virtual reality-based training improves response in a simulated operating room fire scenario. Surgical Endoscopy, vol. 32, no. 8, p. 3439-3449, 25 Jan. 2018.
[19] YOGANATHAN, S.; FINCH, D. A.; PARKIN, E.; POLLARD, J. 360° virtual reality video for the acquisition of knot tying skills: A randomised controlled trial. International Journal of Surgery, vol. 54, p. 24-27, June 2018.
[20] ÇALISKAN, O. Virtual field trips in education of earth and environmental sciences. Procedia - Social and Behavioral Sciences, vol. 15, p. 3239-3243, 2011.
[21] SATU, P.; JARI, L.; HANNA, K.; TOMI, P.; MARJA, L.; TUISKU-TUULI, S. Virtual-Reality training solutions for nuclear power plant field operators: A scoping review. Progress in Nuclear Energy, vol. 169, p. 105104, Apr. 2024.
[22] ALVES, A.; HERITAGE, E.; SMITH, M. ADEPT – Virtual Reality Visualization of Dose Rate Fields for Dose and Decommissioning Planning. In: WM2025 Conference, March 2025, Phoenix, AZ, USA. WM2025 Conference. Mar. 2025.
[23] GELAUTZ, P.; BREITINGER, M.; CRAIG, B; LIU, Y. Y.; EDGE, E. Virtual Reality for Transport Emergency Response Training. In: WM2025 Conference, March 2025, Phoenix, AZ, USA. WM2025 Conference. Mar. 2025.
[24] SILVA, L. G. M. Visita virtual ao reator nuclear de pesquisa IEA-R1. Dissertação (Mestrado em Tecnologia Nuclear - Reatores) - Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, 2023.
[25] CNOP, A. C. Simulação virtual de visita técnica no reator argonauta para fins de divulgação científica. Dissertação (Programa de Pós-graduação em Ciência e Tecnologia Nucleares), Instituto de Engenharia Nuclear, Rio de Janeiro, 2016.
[26] IPEN - INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES. Reator IEA-R1. Available at: https://web.archive.org/web/20200922071740/https://www.ipen.br/portal_por/portal/interna.php?secao_id=729. Accessed on: 30 jul. 2024
[27] UMBEHAUN, P. E.; DE ANDRADE, D. A.; TORRES, W. M.; RICCI FILHO, W. IEA-R1 Nuclear Reactor: Facility Specification and Experimental Results, p. 30, 2015.
[28] ŠMID, A. Comparison of Unity and Unreal Engine. Bachelor Project Thesis (Computer Software Engineering and Management) – Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, 2017.
[29] GAJEWSKI, S.; EL MAWAS, N.; HEUTTE, J. A Systematic Literature Review of Game Design Tools. In: 14TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED EDUCATION, 2022, Online Streaming. 14th International Conference on Computer Supported Education. [S. l.]: SCITEPRESS - Science and Technology Publications, 2022. p. 404-414.
[30] UNREAL ENGINE. Unreal® Engine End User License Agreement. 1998.Disponível em: https://www.unrealengine.com/pt-BR/eula-reference/unreal-pt-br Acesso em: 30 jul. 2024
[31] GONÇALVES, G.; COELHO, H.; MONTEIRO, P.; MELO, M.; BESSA, M. Systematic Review of Comparative Studies of the Impact of Realism in Immersive Virtual Experiences. ACM Computing Surveys, v. 55, n. 6, p. 1-36, 2022.
[32] IPEN - INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES. Reator de Pesquisa IPEN-MB/01. Available at: https://web.archive.org/web/20220208182430/https://www.ipen.br/portal_por/portal/interna.php?secao_id=723. Accessed on: 30 jul. 2024
[33] ROUSSOU, M. Learning by doing and learning through play. Computers in Entertainment, v. 2, n. 1, p. 10, 2004.
[34] DALGARNO, B; LEE, M. J. W. What are the learning affordances of 3-D virtual environments? British Journal of Educational Technology, v. 41, n. 1, p. 10-32, 2009.
Descargas
Publicado
Número
Sección
Categorías
Licencia
Derechos de autor 2025 Helio Coelho, Gaianê Sabundjian

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/